Physics 371: Problem Set 3

Sean Carroll, Spring 2006 Due Thursday 27 April, 1:30 p.m.

- 1. Define a_{eq} as the scale factor and t_{eq} as the time when the density of radiation ρ_{R} (including massless neutrinos) equals the density of matter ρ_{M} . Assume a flat universe, k = 0.
 - (a) Show that

$$\frac{t}{t_{\rm eq}} = \frac{1}{2 - \sqrt{2}} \left[\left(\frac{a}{a_{\rm eq}} - 2 \right) \left(\frac{a}{a_{\rm eq}} + 1 \right)^{1/2} + 2 \right] . \tag{1}$$

(b) Show that

$$H_{\rm eq} = \frac{4}{3}(\sqrt{2} - 1)t_{\rm eq}^{-1} .$$
 (2)

(c) Calculate $1 + z_{eq} = a_0/a_{eq}$ from

$$\rho_{\rm R0} = \frac{\pi^2}{30} g_{*0} T_0^4 \ . \tag{3}$$

Express your answer in terms of Ω_{M0} and $h = H_0/(100 \text{ km/sec/Mpc})$. That is, use your knowledge of T_0 and g_{*0} .

- (d) Calculate the photon temperature T_{eq} in terms of h.
- 2. This problem is considerably simplified in comparison with reality, but it's enought to get an idea of how things work. We imagine that a massless electron neutrino with 100 GeV of energy scatters off of a proton at rest in our lab, leaving the identity of each particle unaltered. For purposes of this problem, imagine that the proton is a single featureless particle (rather than made up of quarks), and that the weak-interaction vertex comes with a factor $g_w \sim 0.6$ for both the neutrino and the proton.
 - (a) What is the center-of-mass energy, $E_{\rm cm} = \sqrt{s}$?
 - (b) What Feynman diagram gives the largest contribution to this process?
 - (c) Estimate the cross-section using the techniques discussed in class. Express your answer in barns (1 barn = 10^{-24} cm²).
 - (d) Calculate the equivalent cross-section if the particle at rest in our lab had been an electron rather than a proton. Which is larger?

- (e) In either case (electron or proton), would the answer have been different if it had been a muon neutrino rather than an electron neutrino?
- 3. Section 3.4 of Kolb and Turner gives a sketch of how to derive the entropy per comoving volume, $S = a^3(\rho + p)/T$. Derive the generalization of this formula to the case of a nonzero chemical potential μ , starting from

$$TdS = d(\rho V) + pdV - \mu d(nV) .$$
⁽⁴⁾

Be explicit.