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8 Cosmology

Contemporary cosmological models are based on the idea that the universe is pretty much

the same everywhere — a stance sometimes known as the Copernican principle. On the

face of it, such a claim seems preposterous; the center of the sun, for example, bears little

resemblance to the desolate cold of interstellar space. But we take the Copernican principle
to only apply on the very largest scales, where local variations in density are averaged

over. Its validity on such scales is manifested in a number of different observations, such

as number counts of galaxies and observations of diffuse X-ray and γ-ray backgrounds, but

is most clear in the 3◦ microwave background radiation. Although we now know that the

microwave background is not perfectly smooth (and nobody ever expected that it was), the

deviations from regularity are on the order of 10−5 or less, certainly an adequate basis for
an approximate description of spacetime on large scales.

The Copernican principle is related to two more mathematically precise properties that

a manifold might have: isotropy and homogeneity. Isotropy applies at some specific point

in the space, and states that the space looks the same no matter what direction you look in.

More formally, a manifold M is isotropic around a point p if, for any two vectors V and W

in TpM , there is an isometry of M such that the pushforward of W under the isometry is
parallel with V (not pushed forward). It is isotropy which is indicated by the observations

of the microwave background.

Homogeneity is the statement that the metric is the same throughout the space. In

other words, given any two points p and q in M , there is an isometry which takes p into q.

Note that there is no necessary relationship between homogeneity and isotropy; a manifold

can be homogeneous but nowhere isotropic (such as R × S2 in the usual metric), or it can
be isotropic around a point without being homogeneous (such as a cone, which is isotropic

around its vertex but certainly not homogeneous). On the other hand, if a space is isotropic

everywhere then it is homogeneous. (Likewise if it is isotropic around one point and also

homogeneous, it will be isotropic around every point.) Since there is ample observational

evidence for isotropy, and the Copernican principle would have us believe that we are not

the center of the universe and therefore observers elsewhere should also observe isotropy, we
will henceforth assume both homogeneity and isotropy.

There is one catch. When we look at distant galaxies, they appear to be receding from us;

the universe is apparently not static, but changing with time. Therefore we begin construc-

tion of cosmological models with the idea that the universe is homogeneous and isotropic in

space, but not in time. In general relativity this translates into the statement that the uni-

verse can be foliated into spacelike slices such that each slice is homogeneous and isotropic.
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We therefore consider our spacetime to be R × Σ, where R represents the time direction

and Σ is a homogeneous and isotropic three-manifold. The usefulness of homogeneity and
isotropy is that they imply that Σ must be a maximally symmetric space. (Think of isotropy

as invariance under rotations, and homogeneity as invariance under translations. Then ho-

mogeneity and isotropy together imply that a space has its maximum possible number of

Killing vectors.) Therefore we can take our metric to be of the form

ds2 = −dt2 + a2(t)γij(u)duiduj . (8.1)

Here t is the timelike coordinate, and (u1, u2, u3) are the coordinates on Σ; γij is the max-

imally symmetric metric on Σ. This formula is a special case of (7.2), which we used to

derive the Schwarzschild metric, except we have scaled t such that gtt = −1. The function
a(t) is known as the scale factor, and it tells us “how big” the spacelike slice Σ is at the

moment t. The coordinates used here, in which the metric is free of cross terms dt dui and

the spacelike components are proportional to a single function of t, are known as comoving

coordinates, and an observer who stays at constant ui is also called “comoving”. Only

a comoving observer will think that the universe looks isotropic; in fact on Earth we are

not quite comoving, and as a result we see a dipole anisotropy in the cosmic microwave
background as a result of the conventional Doppler effect.

Our interest is therefore in maximally symmetric Euclidean three-metrics γij. We know

that maximally symmetric metrics obey

(3)Rijkl = k(γikγjl − γilγjk) , (8.2)

where k is some constant, and we put a superscript (3) on the Riemann tensor to remind us

that it is associated with the three-metric γij, not the metric of the entire spacetime. The

Ricci tensor is then
(3)Rjl = 2kγjl . (8.3)

If the space is to be maximally symmetric, then it will certainly be spherically symmetric.

We already know something about spherically symmetric spaces from our exploration of the
Schwarzschild solution; the metric can be put in the form

dσ2 = γijdui duj = e2β(r)dr2 + r2(dθ2 + sin2 θ dφ2) . (8.4)

The components of the Ricci tensor for such a metric can be obtained from (7.16), the Ricci

tensor for a spherically symmetric spacetime, by setting α = 0 and ∂0β = 0, which gives

(3)R11 =
2

r
∂1β

(3)R22 = e−2β(r∂1β − 1) + 1
(3)R33 = [e−2β(r∂1β − 1) + 1] sin2 θ . (8.5)
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We set these proportional to the metric using (8.3), and can solve for β(r):

β = −1

2
ln(1 − kr2) . (8.6)

This gives us the following metric on spacetime:

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]

. (8.7)

This is the Robertson-Walker metric. We have not yet made use of Einstein’s equations;

those will determine the behavior of the scale factor a(t).

Note that the substitutions

k → k
|k|

r →
√
|k| r

a → a√
|k|

(8.8)

leave (8.7) invariant. Therefore the only relevant parameter is k/|k|, and there are three

cases of interest: k = −1, k = 0, and k = +1. The k = −1 case corresponds to constant

negative curvature on Σ, and is called open; the k = 0 case corresponds to no curvature on
Σ, and is called flat; the k = +1 case corresponds to positive curvature on Σ, and is called

closed.

Let us examine each of these possibilities. For the flat case k = 0 the metric on Σ is

dσ2 = dr2 + r2dΩ2

= dx2 + dy2 + dz2 , (8.9)

which is simply flat Euclidean space. Globally, it could describe R3 or a more complicated

manifold, such as the three-torus S1 × S1 × S1. For the closed case k = +1 we can define
r = sinχ to write the metric on Σ as

dσ2 = dχ2 + sin2 χ dΩ2 , (8.10)

which is the metric of a three-sphere. In this case the only possible global structure is

actually the three-sphere (except for the non-orientable manifold RP3). Finally in the open

k = −1 case we can set r = sinhψ to obtain

dσ2 = dψ2 + sinh2 ψ dΩ2 . (8.11)

This is the metric for a three-dimensional space of constant negative curvature; it is hard
to visualize, but think of the saddle example we spoke of in Section Three. Globally such

a space could extend forever (which is the origin of the word “open”), but it could also
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describe a non-simply-connected compact space (so “open” is really not the most accurate

description).
With the metric in hand, we can set about computing the connection coefficients and

curvature tensor. Setting ȧ ≡ da/dt, the Christoffel symbols are given by

Γ0
11 =

aȧ

1 − kr2
Γ0

22 = aȧr2 Γ0
33 = aȧr2 sin2 θ

Γ1
01 = Γ1

10 = Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 =
ȧ

a
Γ1

22 = −r(1 − kr2) Γ1
33 = −r(1 − kr2) sin2 θ

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r
Γ2

33 = − sin θ cos θ Γ3
23 = Γ3

32 = cot θ . (8.12)

The nonzero components of the Ricci tensor are

R00 = −3
ä

a

R11 =
aä + 2ȧ2 + 2k

1 − kr2

R22 = r2(aä + 2ȧ2 + 2k)

R33 = r2(aä + 2ȧ2 + 2k) sin2 θ , (8.13)

and the Ricci scalar is then

R =
6

a2
(aä + ȧ2 + k) . (8.14)

The universe is not empty, so we are not interested in vacuum solutions to Einstein’s

equations. We will choose to model the matter and energy in the universe by a perfect

fluid. We discussed perfect fluids in Section One, where they were defined as fluids which

are isotropic in their rest frame. The energy-momentum tensor for a perfect fluid can be

written

Tµν = (p + ρ)UµUν + pgµν , (8.15)

where ρ and p are the energy density and pressure (respectively) as measured in the rest

frame, and Uµ is the four-velocity of the fluid. It is clear that, if a fluid which is isotropic in

some frame leads to a metric which is isotropic in some frame, the two frames will coincide;

that is, the fluid will be at rest in comoving coordinates. The four-velocity is then

Uµ = (1, 0, 0, 0) , (8.16)

and the energy-momentum tensor is

Tµν =





ρ 0 0 0
0
0 gijp
0



 . (8.17)
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With one index raised this takes the more convenient form

T µ
ν = diag(−ρ, p, p, p) . (8.18)

Note that the trace is given by

T = T µ
µ = −ρ+ 3p . (8.19)

Before plugging in to Einstein’s equations, it is educational to consider the zero compo-
nent of the conservation of energy equation:

0 = ∇µT µ
0

= ∂µT
µ
0 + Γµ

µ0T
0
0 − Γλ

µ0T
µ

λ

= −∂0ρ− 3
ȧ

a
(ρ+ p) . (8.20)

To make progress it is necessary to choose an equation of state, a relationship between ρ
and p. Essentially all of the perfect fluids relevant to cosmology obey the simple equation of

state

p = wρ , (8.21)

where w is a constant independent of time. The conservation of energy equation becomes

ρ̇

ρ
= −3(1 + w)

ȧ

a
, (8.22)

which can be integrated to obtain
ρ ∝ a−3(1+w) . (8.23)

The two most popular examples of cosmological fluids are known as dust and radiation.

Dust is collisionless, nonrelativistic matter, which obeys w = 0. Examples include ordinary

stars and galaxies, for which the pressure is negligible in comparison with the energy density.

Dust is also known as “matter”, and universes whose energy density is mostly due to dust

are known as matter-dominated. The energy density in matter falls off as

ρ ∝ a−3 . (8.24)

This is simply interpreted as the decrease in the number density of particles as the universe

expands. (For dust the energy density is dominated by the rest energy, which is proportional

to the number density.) “Radiation” may be used to describe either actual electromagnetic

radiation, or massive particles moving at relative velocities sufficiently close to the speed of

light that they become indistinguishable from photons (at least as far as their equation of

state is concerned). Although radiation is a perfect fluid and thus has an energy-momentum
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tensor given by (8.15), we also know that Tµν can be expressed in terms of the field strength

as
T µν =

1

4π
(F µλF ν

λ − 1

4
gµνF λσFλσ) . (8.25)

The trace of this is given by

T µ
µ =

1

4π

[
F µλFµλ − 1

4
(4)F λσFλσ

]
= 0 . (8.26)

But this must also equal (8.19), so the equation of state is

p =
1

3
ρ . (8.27)

A universe in which most of the energy density is in the form of radiation is known as

radiation-dominated. The energy density in radiation falls off as

ρ ∝ a−4 . (8.28)

Thus, the energy density in radiation falls off slightly faster than that in matter; this is

because the number density of photons decreases in the same way as the number density of

nonrelativistic particles, but individual photons also lose energy as a−1 as they redshift, as
we will see later. (Likewise, massive but relativistic particles will lose energy as they “slow

down” in comoving coordinates.) We believe that today the energy density of the universe

is dominated by matter, with ρmat/ρrad ∼ 106. However, in the past the universe was much

smaller, and the energy density in radiation would have dominated at very early times.

There is one other form of energy-momentum that is sometimes considered, namely that

of the vacuum itself. Introducing energy into the vacuum is equivalent to introducing a
cosmological constant. Einstein’s equations with a cosmological constant are

Gµν = 8πGTµν − Λgµν , (8.29)

which is clearly the same form as the equations with no cosmological constant but an energy-

momentum tensor for the vacuum,

T (vac)
µν = − Λ

8πG
gµν . (8.30)

This has the form of a perfect fluid with

ρ = −p =
Λ

8πG
. (8.31)

We therefore have w = −1, and the energy density is independent of a, which is what we

would expect for the energy density of the vacuum. Since the energy density in matter and
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radiation decreases as the universe expands, if there is a nonzero vacuum energy it tends

to win out over the long term (as long as the universe doesn’t start contracting). If this
happens, we say that the universe becomes vacuum-dominated.

We now turn to Einstein’s equations. Recall that they can be written in the form (4.45):

Rµν = 8πG
(
Tµν −

1

2
gµνT

)
. (8.32)

The µν = 00 equation is

− 3
ä

a
= 4πG(ρ+ 3p) , (8.33)

and the µν = ij equations give

ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2
= 4πG(ρ− p) . (8.34)

(There is only one distinct equation from µν = ij, due to isotropy.) We can use (8.33) to
eliminate second derivatives in (8.34), and do a little cleaning up to obtain

ä

a
= −4πG

3
(ρ+ 3p) , (8.35)

and (
ȧ

a

)2

=
8πG

3
ρ− k

a2
. (8.36)

Together these are known as the Friedmann equations, and metrics of the form (8.7)

which obey these equations define Friedmann-Robertson-Walker (FRW) universes.

There is a bunch of terminology which is associated with the cosmological parameters,
and we will just introduce the basics here. The rate of expansion is characterized by the

Hubble parameter,

H =
ȧ

a
. (8.37)

The value of the Hubble parameter at the present epoch is the Hubble constant, H0. There

is currently a great deal of controversy about what its actual value is, with measurements

falling in the range of 40 to 90 km/sec/Mpc. (“Mpc” stands for “megaparsec”, which is

3 × 1024 cm.) Note that we have to divide ȧ by a to get a measurable quantity, since the

overall scale of a is irrelevant. There is also the deceleration parameter,

q = −aä

ȧ2
, (8.38)

which measures the rate of change of the rate of expansion.
Another useful quantity is the density parameter,

Ω =
8πG

3H2
ρ
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=
ρ

ρcrit
, (8.39)

where the critical density is defined by

ρcrit =
3H2

8πG
. (8.40)

This quantity (which will generally change with time) is called the “critical” density because

the Friedmann equation (8.36) can be written

Ω− 1 =
k

H2a2
. (8.41)

The sign of k is therefore determined by whether Ω is greater than, equal to, or less than
one. We have

ρ < ρcrit ↔ Ω < 1 ↔ k = −1 ↔ open
ρ = ρcrit ↔ Ω = 1 ↔ k = 0 ↔ flat
ρ > ρcrit ↔ Ω > 1 ↔ k = +1 ↔ closed .

The density parameter, then, tells us which of the three Robertson-Walker geometries de-
scribes our universe. Determining it observationally is an area of intense investigation.

It is possible to solve the Friedmann equations exactly in various simple cases, but it

is often more useful to know the qualitative behavior of various possibilities. Let us for

the moment set Λ = 0, and consider the behavior of universes filled with fluids of positive

energy (ρ > 0) and nonnegative pressure (p ≥ 0). Then by (8.35) we must have ä < 0.

Since we know from observations of distant galaxies that the universe is expanding (ȧ > 0),
this means that the universe is “decelerating.” This is what we should expect, since the

gravitational attraction of the matter in the universe works against the expansion. The fact

that the universe can only decelerate means that it must have been expanding even faster

in the past; if we trace the evolution backwards in time, we necessarily reach a singularity

at a = 0. Notice that if ä were exactly zero, a(t) would be a straight line, and the age of

the universe would be H−1
0 . Since ä is actually negative, the universe must be somewhat

younger than that.

This singularity at a = 0 is the Big Bang. It represents the creation of the universe

from a singular state, not explosion of matter into a pre-existing spacetime. It might be

hoped that the perfect symmetry of our FRW universes was responsible for this singularity,

but in fact it’s not true; the singularity theorems predict that any universe with ρ > 0 and

p ≥ 0 must have begun at a singularity. Of course the energy density becomes arbitrarily
high as a → 0, and we don’t expect classical general relativity to be an accurate description

of nature in this regime; hopefully a consistent theory of quantum gravity will be able to fix

things up.
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now

Big
Bang

a(t)

t
-1H 0

The future evolution is different for different values of k. For the open and flat cases,

k ≤ 0, (8.36) implies

ȧ2 =
8πG

3
ρa2 + |k| . (8.42)

The right hand side is strictly positive (since we are assuming ρ > 0), so ȧ never passes

through zero. Since we know that today ȧ > 0, it must be positive for all time. Thus,

the open and flat universes expand forever — they are temporally as well as spatially open.

(Please keep in mind what assumptions go into this — namely, that there is a nonzero
positive energy density. Negative energy density universes do not have to expand forever,

even if they are “open”.)

How fast do these universes keep expanding? Consider the quantity ρa3 (which is constant

in matter-dominated universes). By the conservation of energy equation (8.20) we have

d

dt
(ρa3) = a3

(
ρ̇+ 3ρ

ȧ

a

)

= −3pa2ȧ . (8.43)

The right hand side is either zero or negative; therefore

d

dt
(ρa3) ≤ 0 . (8.44)

This implies in turn that ρa2 must go to zero in an ever-expanding universe, where a → ∞.

Thus (8.42) tells us that
ȧ2 → |k| . (8.45)

(Remember that this is true for k ≤ 0.) Thus, for k = −1 the expansion approaches the

limiting value ȧ → 1, while for k = 0 the universe keeps expanding, but more and more

slowly.
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For the closed universes (k = +1), (8.36) becomes

ȧ2 =
8πG

3
ρa2 − 1 . (8.46)

The argument that ρa2 → 0 as a → ∞ still applies; but in that case (8.46) would be-

come negative, which can’t happen. Therefore the universe does not expand indefinitely; a

possesses an upper bound amax. As a approaches amax, (8.35) implies

ä → −4πG

3
(ρ+ 3p)amax < 0 . (8.47)

Thus ä is finite and negative at this point, so a reaches amax and starts decreasing, whereupon

(since ä < 0) it will inevitably continue to contract to zero — the Big Crunch. Thus, the

closed universes (again, under our assumptions of positive ρ and nonnegative p) are closed

in time as well as space.

a(t)

t
nowbang crunch

k = 0

k = -1

k = +1

We will now list some of the exact solutions corresponding to only one type of energy

density. For dust-only universes (p = 0), it is convenient to define a development angle

φ(t), rather than using t as a parameter directly. The solutions are then, for open universes,
{

a = C
2 (cosh φ− 1)

t = C
2 (sinh φ− φ) (k = −1) , (8.48)

for flat universes,

a =
(

9C

4

)1/3

t2/3 (k = 0) , (8.49)

and for closed universes,
{

a = C
2 (1 − cosφ)

t = C
2 (φ− sinφ)

(k = +1) , (8.50)
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where we have defined

C =
8πG

3
ρa3 = constant . (8.51)

For universes filled with nothing but radiation, p = 1
3ρ, we have once again open universes,

a =
√

C ′




(

1 +
t√
C ′

)2

− 1




1/2

(k = −1) , (8.52)

flat universes,

a = (4C ′)1/4t1/2 (k = 0) , (8.53)

and closed universes,

a =
√

C ′



1 −
(

1 − t√
C ′

)2



1/2

(k = +1) , (8.54)

where this time we defined

C ′ =
8πG

3
ρa4 = constant . (8.55)

You can check for yourselves that these exact solutions have the properties we argued would

hold in general.

For universes which are empty save for the cosmological constant, either ρ or p will be

negative, in violation of the assumptions we used earlier to derive the general behavior of

a(t). In this case the connection between open/closed and expands forever/recollapses is

lost. We begin by considering Λ < 0. In this case Ω is negative, and from (8.41) this can
only happen if k = −1. The solution in this case is

a =

√
−3

Λ
sin





√
−Λ
3

t



 . (8.56)

There is also an open (k = −1) solution for Λ > 0, given by

a =

√
3

Λ
sinh





√
Λ

3
t



 . (8.57)

A flat vacuum-dominated universe must have Λ > 0, and the solution is

a ∝ exp



±
√
Λ

3
t



 , (8.58)

while the closed universe must also have Λ > 0, and satisfies

a =

√
3

Λ
cosh





√
Λ

3
t



 . (8.59)
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These solutions are a little misleading. In fact the three solutions for Λ > 0 — (8.57), (8.58),

and (8.59) — all represent the same spacetime, just in different coordinates. This spacetime,
known as de Sitter space, is actually maximally symmetric as a spacetime. (See Hawking

and Ellis for details.) The Λ < 0 solution (8.56) is also maximally symmetric, and is known

as anti-de Sitter space.

It is clear that we would like to observationally determine a number of quantities to decide

which of the FRW models corresponds to our universe. Obviously we would like to determine

H0, since that is related to the age of the universe. (For a purely matter-dominated, k = 0
universe, (8.49) implies that the age is 2/(3H0). Other possibilities would predict similar

relations.) We would also like to know Ω, which determines k through (8.41). Given the

definition (8.39) of Ω, this means we want to know both H0 and ρ0. Unfortunately both

quantities are hard to measure accurately, especially ρ. But notice that the deceleration

parameter q can be related to Ω using (8.35):

q = −aä

ȧ2

= −H−2 ä

a

=
4πG

3H2
(ρ+ 3p)

=
4πG

3H2
ρ(1 + 3w)

=
1 + 3w

2
Ω . (8.60)

Therefore, if we think we know what w is (i.e., what kind of stuff the universe is made of),

we can determine Ω by measuring q. (Unfortunately we are not completely confident that

we know w, and q is itself hard to measure. But people are trying.)

To understand how these quantities might conceivably be measured, let’s consider geo-

desic motion in an FRW universe. There are a number of spacelike Killing vectors, but no

timelike Killing vector to give us a notion of conserved energy. There is, however, a Killing
tensor. If Uµ = (1, 0, 0, 0) is the four-velocity of comoving observers, then the tensor

Kµν = a2(gµν + UµUν) (8.61)

satisfies ∇(σKµν) = 0 (as you can check), and is therefore a Killing tensor. This means that

if a particle has four-velocity V µ = dxµ/dλ, the quantity

K2 = KµνV
µV ν = a2[VµV µ + (UµV µ)2] (8.62)

will be a constant along geodesics. Let’s think about this, first for massive particles. Then
we will have VµV µ = −1, or

(V 0)2 = 1 + |.V |2 , (8.63)
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where |.V |2 = gijV iV j. So (8.61) implies

|.V | =
K

a
. (8.64)

The particle therefore “slows down” with respect to the comoving coordinates as the universe

expands. In fact this is an actual slowing down, in the sense that a gas of particles with

initially high relative velocities will cool down as the universe expands.

A similar thing happens to null geodesics. In this case VµV µ = 0, and (8.62) implies

UµV
µ =

K

a
. (8.65)

But the frequency of the photon as measured by a comoving observer is ω = −UµV µ. The

frequency of the photon emitted with frequency ω1 will therefore be observed with a lower

frequency ω0 as the universe expands:

ω0

ω1
=

a1

a0
. (8.66)

Cosmologists like to speak of this in terms of the redshift z between the two events, defined

by the fractional change in wavelength:

z =
λ0 − λ1

λ1

=
a0

a1
− 1 . (8.67)

Notice that this redshift is not the same as the conventional Doppler effect; it is the expansion

of space, not the relative velocities of the observer and emitter, which leads to the redshift.
The redshift is something we can measure; we know the rest-frame wavelengths of various

spectral lines in the radiation from distant galaxies, so we can tell how much their wavelengths

have changed along the path from time t1 when they were emitted to time t0 when they were

observed. We therefore know the ratio of the scale factors at these two times. But we don’t

know the times themselves; the photons are not clever enough to tell us how much coordinate

time has elapsed on their journey. We have to work harder to extract this information.

Roughly speaking, since a photon moves at the speed of light its travel time should simply
be its distance. But what is the “distance” of a far away galaxy in an expanding universe?

The comoving distance is not especially useful, since it is not measurable, and furthermore

because the galaxies need not be comoving in general. Instead we can define the luminosity

distance as

d2
L =

L

4πF
, (8.68)

where L is the absolute luminosity of the source and F is the flux measured by the observer

(the energy per unit time per unit area of some detector). The definition comes from the
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fact that in flat space, for a source at distance d the flux over the luminosity is just one

over the area of a sphere centered around the source, F/L = 1/A(d) = 1/4πd2. In an FRW
universe, however, the flux will be diluted. Conservation of photons tells us that the total

number of photons emitted by the source will eventually pass through a sphere at comoving

distance r from the emitter. Such a sphere is at a physical distance d = a0r, where a0 is

the scale factor when the photons are observed. But the flux is diluted by two additional

effects: the individual photons redshift by a factor (1 + z), and the photons hit the sphere

less frequently, since two photons emitted a time δt apart will be measured at a time (1+z)δt
apart. Therefore we will have

F

L
=

1

4πa2
0r2(1 + z)2

, (8.69)

or

dL = a0r(1 + z) . (8.70)

The luminosity distance dL is something we might hope to measure, since there are some

astrophysical sources whose absolute luminosities are known (“standard candles”). But r is
not observable, so we have to remove that from our equation. On a null geodesic (chosen to

be radial for convenience) we have

0 = ds2 = −dt2 +
a2

1 − kr2
dr2 , (8.71)

or ∫ t0

t1

dt

a(t)
=

∫ r

0

dr

(1 − kr2)1/2
. (8.72)

For galaxies not too far away, we can expand the scale factor in a Taylor series about its

present value:

a(t1) = a0 + (ȧ)0(t1 − t0) +
1

2
(ä)0(t1 − t0)

2 + . . . . (8.73)

We can then expand both sides of (8.72) to find

r = a−1
0

[
(t0 − t1) +

1

2
H0(t0 − t1)

2 + . . .
]

. (8.74)

Now remembering (8.67), the expansion (8.73) is the same as

1

1 + z
= 1 + H0(t1 − t0) −

1

2
q0H

2
0 (t1 − t0)

2 + . . . . (8.75)

For small H0(t1 − t0) this can be inverted to yield

t0 − t1 = H−1
0

[
z −

(
1 +

q0

2

)
z2 + . . .

]
. (8.76)
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Substituting this back again into (8.74) gives

r =
1

a0H0

[
z − 1

2
(1 + q0) z2 + . . .

]
. (8.77)

Finally, using this in (8.70) yields Hubble’s Law:

dL = H−1
0

[
z +

1

2
(1 − q0)z

2 + . . .
]

. (8.78)

Therefore, measurement of the luminosity distances and redshifts of a sufficient number of

galaxies allows us to determine H0 and q0, and therefore takes us a long way to deciding

what kind of FRW universe we live in. The observations themselves are extremely difficult,

and the values of these parameters in the real world are still hotly contested. Over the next

decade or so a variety of new strategies and more precise application of old strategies could

very well answer these questions once and for all.


