This month’s provocative results on the acceleration of the universe raise an interesting issue: what can we say about our universe’s ultimate fate? In the old days (like, when I was in grad school) we were told a story that was simple, compelling, and wrong. It went like this: matter acts to slow down the expansion of the universe, and also to give it spatial curvature. If there is enough matter, space will be positively curved (like a sphere) and will eventually collapse into a Big Crunch. If there is little matter, space will be negatively curved (like a saddle) and expand forever. And if the matter content is just right, space will be flat and will just barely expand forever, slowing down all the while.
This story is wrong in a couple of important ways. First and foremost, the assumption that the only important component of the universe is “matter” (or radiation, for that matter) is unduly restrictive. Now that we think that there is dark energy, the simple relation between spatial curvature and the ultimate fate of the universe is completely out the window. We can have positively curved universes that expand forever, negatively curved ones that recollapse, or what have you. (See my little article on the cosmological constant.) To determine the ultimate fate of the universe, you need to know both how much dark energy there is, and how it changes with time. (Mark has also written about this with Dragan Huterer and Glenn Starkman.)
If we take current observations at face value, and make the economical assumption that the dark energy is strictly constant in density, all indications are that the universe is going to expand forever, never to recollapse. If any of your friends go on a trip that extends beyond the Hubble radius (about ten billion light-years), kiss them goodbye, because they won’t ever be able to return — the space in between you and them will expand so quickly that they couldn’t get back to you, even if they were moving at the speed of light. Meanwhile, stars will die out and eventually collapse to black holes. The black holes will ultimately evaporate, leaving nothing in the universe but an increasingly dilute and cold gas of particles. A desolate, quiet, and lonely universe.
However, if the dark energy density actually increases with time, as it does with phantom energy, a completely new possibility presents itself: not a Big Crunch, but a Big Rip. Explored by McInnes and by Robert Caldwell, Marc Kamionkowski, and Nevin Weinberg, the Big Rip happens when the universe isn’t just accelerating, but super-accelerating — i.e., the rate of acceleration is perpetually increasing. If that happens, all hell breaks loose. The super-accelerated expansion of spacetime exerts a stretching force on all the galaxies, stars, and atoms in the universe. As it increases in strength, every bound structure in the universe is ultimately ripped apart. Eventually we hit a singularity, but a very different one than in the Big Crunch picture: rather than being squashed together, matter is torn to bits and scattered to infinity in a finite amount of time. Some observations, including the new gamma-ray-burst results, show a tiny preference for an increasing dark energy density; but given the implications of such a result, they are far from meeting the standard for convincing anyone that we’ve confidently measured any evolution of the dark energy at all.
So, it sounds like we’d like to know whether this Big Rip thing is going to happen, right? Yes, but there’s bad news: we don’t know if we’re headed for a Big Rip, and no set of cosmological observations will ever tell us. The point is, observations of the past and present are never by themselves sufficient to predict the future. That can only be done within the framework of a theory in which we have confidence. We can say that the universe will hit a Big Rip in so-and-so many years if the dark energy is increasing in density at a certain rate and we are sure that it will continue to increase at that rate. But how can we ever be sure of what the dark energy will do twenty trillion years from now? Only by actually understanding the nature of the dark energy can we extrapolate from present behavior to the distant future. In fact, it’s perfectly straightforward (and arguably more natural) for a phase of super-accelerated expansion to last for a while, before settling down to a more gently accerated phase, avoiding the Big Rip entirely. Truth is, we just don’t know. This is one of those problems that ineluctably depends on progress in both observation and theory.
…
The future of the universeRead More »