How did the universe come to be? We don’t know yet, of course, but we know enough about cosmology, gravitation, and quantum mechanics to put together models that standing a fighting chance of capturing some of the truth.
Stephen Hawking‘s favorite idea is that the universe came out of “nothing” — it arose (although that’s not really the right word) as a quantum fluctuation with literally no pre-existing state. No space, no time, no anything. But there’s another idea that’s at least as plausible: that the universe arose out of something, but that “something” was simply “chaos,” whatever that means in the context of quantum gravity. Space, time, and energy, yes; but no order, no particular arrangement.
It’s an old idea, going back at least to Lucretius, and contemplated by David Hume as well as by Ludwig Boltzmann. None of those guys, of course, knew very much of our modern understanding of cosmology, gravitation, and quantum mechanics. So what would the modern version look like?
That’s the question that Anthony Aguirre, Matt Johnson and I tackled in a paper that just appeared on arxiv. (Both of my collaborators have also been guest-bloggers here at CV.)
Out of equilibrium: understanding cosmological evolution to lower-entropy states
Anthony Aguirre, Sean M. Carroll, Matthew C. Johnson
Despite the importance of the Second Law of Thermodynamics, it is not absolute. Statistical mechanics implies that, given sufficient time, systems near equilibrium will spontaneously fluctuate into lower-entropy states, locally reversing the thermodynamic arrow of time. We study the time development of such fluctuations, especially the very large fluctuations relevant to cosmology. Under fairly general assumptions, the most likely history of a fluctuation out of equilibrium is simply the CPT conjugate of the most likely way a system relaxes back to equilibrium. We use this idea to elucidate the spacetime structure of various fluctuations in (stable and metastable) de Sitter space and thermal anti-de Sitter space.
It was Boltzmann who long ago realized that the Second Law, which says that the entropy of a closed system never decreases, isn’t quite an absolute “law.” It’s just a statement of overwhelming probability: there are so many more ways to be high-entropy (chaotic, disorderly) than to be low-entropy (arranged, orderly) that almost anything a system might do will move it toward higher entropy. But not absolutely anything; we can imagine very, very unlikely events in which entropy actually goes down.
In fact we can do better than just imagine: this has been observed in the lab. …
A Universe Out of ChaosRead More »