Science or Sociology?
Joseph Polchinski, 5/20/07
This is a continuation of the on-line discussion between Lee Smolin and myself, which began with my review of his book and has now continued with his response. A copy of this exchange (without the associated comment threads) is here.
Dear Lee,
Thank you for your recent response to my review. It will certainly be helpful in clarifying the issues. Let me start with your wish that I do more to address the broader issues in your book. When I accepted the offer to review these two books, I made two resolutions. The first was to stick to the physics, because this is our ultimate goal, and because it is an area where I can contribute expertise. Also, keeping my first resolution would help me to keep the second, which was to stay positive. I am happy that my review has been well-received. Your response raises some issues of physics, and these are the most interesting things to discuss, but I will also address some of the broader issues you raise, including the process of physics, ethics, and the question in the title. Let me emphasize that I have no desire to criticize you personally, but in order to present my point of view I must take serious issue both with your facts and with the way that they are presented.
Regarding your points:
The fictitious prediction of a non-positive cosmological constant. This is a key point in your book, and the explanation that you now give makes no logical sense. In your book you say (A) “… it [a non-positive cosmological constant] was widely understood to be a consequence of string theory.” You now justify this by the argument that a non-positive cosmological constant is a consequence of unbroken supersymmetry (true), so A would follow from (B) Unbroken supersymmetry was widely understood to be a consequence of string theory. But even if this were true, it would not support your story about the observation of the dark energy leading to a “genuine crisis, … a clear disagreement between observation and a prediction of string theory.” There would already have been a crisis, since supersymmetry must obviously be broken in nature; seeing the dark energy would not add to this. But in fact the true situation, as you can find in my book or in many review articles, was closer to the opposite of B than to B: (B’) Supersymmetry is broken in almost all Calabi-Yau vacua of heterotic string theory. We have no controlled examples because at least one modulus rolls off, usually to a regime where we cannot calculate. The solution to this problem may have to wait until we have a non-perturbative formulation of gravity, or even a solution to the cosmological constant problem.
In your response you largely raise issues surrounding B’, including the Witten quote, but I want to return to what you have actually written in your book. It is a compelling story, which leads into your discussion of “a group of experts doing what they can to save a cherished theory in the face of data that seem to contradict it.” It surely made a big impression on every reader; it was mentioned in several blogs, and in Peter Shor’s Amazon review. And it never happened. It is an example of something that that happens all too often in your book: you have a story that you believe, or want to believe, and you ignore the facts.
You go on to challenge the ethics of string theorists in regard to how they presented the issue of moduli stabilization in their talks and papers. I am quite sure that in every colloquium that I gave I said something that could be summarized as “We do not understand the vacuum in string theory. The cosmological constant problem is telling us that there is something that we do not understand about our own vacuum. And, we do not know the underlying principle of string theory. These various problems may be related.” The cosmological constant and the nature of string theory seemed much more critical than the moduli stabilization problem, and these are certainly what I and most other string theorists emphasized.
This scientific judgment has largely been borne out in time. In 1995-98 these incredible new nonperturbative tools were developed, and over the next few years many string theorists worked on the problem of applying them to less and less supersymmetric situations, culminating in the construction of stabilized vacua. Obviously many questions remain, and these are widely and openly debated. It seems like a successful scientific process: people knew what the important problems were, worked in various directions (a fair number did work on moduli stabilization over the years), and when the right tools became available the problem was solved. As you point out, the stabilization problem is nearly one hundred years old, and now string theorists (primarily the younger generation, I might add) have solved it. You are portraying a crisis where there is actually a major success, and you are creating an ethical issue where there is none.
AdS/CFT duality. You raise the issue of the existence of the gauge theory. There are two points here. First, Wilson’s construction of quantum field theory has been used successfully for 40 years. It is used in a controlled way by condensed matter physicists, lattice gauge theorists, constructive quantum field theorists, and many others. To argue that a technique that is so well understood does not apply to the case at hand, the scientific ethic requires that you do more than just say Not proven! Sociology! as you have done. You need to give an argument, ideally pointing to a calculation that one could do, or at least discuss, in which one would get the wrong answer.
I have given a specific argument why we are well within the domain of applicability of Wilson: there are 1+1 and 2+1 dimensional versions of AdS/CFT, which are also constructions of quantum gravity, and for which the gauge theory is super-renormalizable (and there are no chiral fermions): the counterterms needed to reach the supersymmetric continuum limit can be calculated in closed form – thus there is an algorithmic definition of the gauge theory side of the duality. You could perhaps argue that there will be a breaking of supersymmetry that will survive in the continuum limit, and we could sit down and do the calculation. But I know what this answer is, because I have done this kind of calculation many times (it is basically just dimensional analysis). Similar calculations, for rotational invariance and chiral symmetry, are routine in lattice gauge theory.
As a further ethical point, in your book you state that it is astounding that Gary Horowitz and I ignore the question of the existence of the gauge theory, and you then use this to make a point about groupthink (this is in your chapter on sociology). While you were writing your book, you and I discussed the above points in detail, so you knew that we had not ignored the issue but had thought about it deeply. You do not even acknowledge the existence of a scientific counterargument to your statement, and in saying that Gary and I ignore the issue you are omitting facts that are known to you in order to turn an issue of science into one of sociology. Again you impose your own beliefs on the facts; thus I am reluctant to accept as accurate the various statements that you attribute elsewhere to anonymous string theorists and others.
You raise again the issue of a weak form of Maldacena duality. As you know, it is very difficult to find a sensible weak form that is consistent with all the evidence and yet not the strong form. In my review I have gone through your book and papers and identified three proposals, and explained why each is wrong. Again, you have not acknowledged the existence of scientific counterarguments, but have just reasserted your original point. If your arguments had been made in a serious way, I would expect that you would have given some deep thought to them and be ready to defend them.
There are some interesting points, one of which I will turn to next.
The role of rigor and calculation. Here we disagree. Let me give some arguments in support of my point of view. A nice example is provided by your paper `The Maldacena conjecture and Rehren duality’ with Arnsdorf, hep-th/0106073.
You argue that strong forms of the Maldacena duality are ruled out because Rehren duality implies that the bulk causal structure is always the fixed causal structure of AdS_5, and so there cannot be gravitational bending of light. But this would in turn imply that there cannot be refraction in the CFT, because the causal structure in the bulk projects to the boundary: null geodesics that travel from boundary to boundary, through the AdS_5 bulk, connect points that lie on null boundary geodesics. Now, the gauge theory certainly does have refraction: there are interactions, so in any state of finite density the speed of propagation will be less than 1. (Since Rehren duality does not refer to the value of the coupling, this argument would hold even at weak coupling, where the refraction can be calculated explicitly.)
You have emphasized that Rehren duality is rigorous, so apparently the problem is that you have assumed that it implies more than it does. Generally, rigorous results have very specific assumptions and very precise consequences. In physics, which is a process of discovery, this can make them worse than useless, since one tends to assume that their assumptions, and their implications, are broader than they actually are. Further, as this example shows, a chain of reasoning is only as strong as its weakest step. Rigor generally makes the strongest steps stronger still – to prove something it is necessary to understand the physics very well first – and so it is often not the critical point where the most effort should be applied. Your paper illustrates another problem with rigor: it is hard to get it right. If one makes one error the whole thing breaks, whereas a good physical argument is more robust. Thus, your paper gives the appearance of rigor, yet reaches a conclusion that is physically nonsensical.
This question of calculation deserves further discussion, and your paper with Arnsdorf makes for an interesting case study, in comparison with mine with Susskind and Toumbas, hep-th/9903228. (I apologize for picking so much on this one paper, but it really does address many of the points at issue, and it is central to the discussion of AdS/CFT in your various reviews.) You argue that there are two difficulties with AdS/CFT: that strong forms of it are inconsistent with the bending of light by gravitational fields, and that the evidence supports a weaker relation that you call conformal induction. We also present two apparent paradoxes: that the duality seems to require acausal behavior, and negative energy densities, in the CFT. The papers differ in that yours contains a handful of very short equations, while ours contains several detailed calculations. What we do is to translate our argument from the imprecise language of words to the precise language of equations.
We then find that the amount of negative energy that must be `borrowed’ is exactly consistent with earlier bounds of Ford and Roman, gr-qc/9901074, and that a simple quantum mechanical model shows that an apparent acausality in the classical variables is in fact fully causal when one looks at the full quantum state. Along the way we learn something interesting about how AdS/CFT works.
This process of translation of an idea from words to calculation will be familiar to any theoretical physicist. It is often the hardest part of a problem, and the point where the greatest creativity enters. Many word-ideas die quickly at this point, or are transmuted or sharpened. Had you applied it to your word-ideas, you would probably have quickly recognized their falsehood. Further, over-reliance on the imprecise language of words is surely correlated with the tendency to confuse scientific arguments with sociological ones.
Finally, I have recently attended a number of talks by leading workers in LQG, at a KITP workshop and the April APS meeting. I am quite certain that the standard of rigor was not higher than in string theory or other areas of physics. In fact, there were quite a number of uncontrolled approximations. This is not necessarily bad – I will also use such approximations when this is all that is available – but it is not rigor. So your insistence on rigor does not actually describe how science is done even in your own field.
…
Guest Post: Joe Polchinski on Science or Sociology?Read More »