Science

The Alternative-Science Respectability Checklist

Believe me, I sympathize. You are in possession of a truly incredible breakthrough that offers the prospect of changing the very face of science as we know it, if not more. The only problem is, you’re coming at things from an unorthodox perspective. Maybe your findings don’t fit comfortably with people’s preconceived notions, or maybe you don’t have the elaborate academic credentials that established scientists take for granted. Perhaps you have been able to construct a machine that produces more energy than it consumes, using only common household implements; or maybe you’ve discovered a hidden pattern within the Fibonacci sequence that accurately predicts the weight that a top quark would experience on Ganymede, expressed in femtonewtons; or it might be that you’ve elaborated upon an alternative explanation for the evolution of life on Earth that augments natural selection by unspecified interventions from a vaguely-defined higher power. Whatever the specifics, the point is that certain kinds of breakthroughs just aren’t going to come from a hide-bound scholastic establishment; they require the fresh perspective and beginner’s mind that only an outsider genius (such as yourself) can bring to the table.

Yet, even though science is supposed to be about being open-minded, and there’s so much that we don’t understand about how the universe works, it’s still hard for outsiders to be taken seriously. Instead, you run up against stuffy attitudes like this:

If there are any new Einsteins out there with a correct theory of everything all LaTeXed up, they should feel quite willing to ask me for an endorsement for the arxiv; I’d be happy to bask in the reflected glory and earn a footnote in their triumphant autobiography. More likely, however, they will just send their paper to Physical Review, where it will be accepted and published, and they will become famous without my help.

If, on the other hand, there is anyone out there who thinks they are the next Einstein, but really they are just a crackpot, don’t bother; I get things like that all the time. Sadly, the real next-Einsteins only come along once per century, whereas the crackpots are far too common.

And that last part is sadly true. There is a numbers game that is working against you. You are not the only person from an alternative perspective who purports to have a dramatic new finding, and here you are asking established scientists to take time out from conventional research to sit down and examine your claims in detail. Of course, we know that you really do have a breakthrough in your hands, while those people are just crackpots. But how do you convince everyone else? All you want is a fair hearing.

Scientists can’t possibly pay equal attention to every conceivable hypothesis, they would literally never do anything else. Whether explicitly or not, they typically apply a Bayesian prior to the claims that are put before them. Purported breakthroughs are not all treated equally; if something runs up against their pre-existing notions of how the universe works, they are much less likely to pay it any attention. So what does it take for the truly important discoveries to get taken seriously?

Happily, we are here to help. It would be a shame if the correct theory to explain away dark matter or account for the origin of life were developed by someone without a conventional academic position, who didn’t really take a lot of science classes in college and didn’t have a great math background but was always interested in the big questions, only for that theory to be neglected because of some churlish prejudice. So we would like to present a simple checklist of things that alternative scientists should do in order to get taken seriously by the Man. And the good news is, it’s only three items! How hard can that be, really? True, each of the items might require a nontrivial amount of work to overcome. Hey, nobody ever said that being a lonely genius was easy.

The Alternative-Science Respectability Checklist Read More »

207 Comments

Latest Declamations about the Arrow of Time

Here are the slides from the physics colloquium I gave at UC Santa Cruz last week, entitled “Why is the Past Different from the Future? The Origin of the Universe and the Arrow of Time.” (Also in pdf.)

Time Colloquium

The real reason I’m sharing this with you is because this talk provoked one of the best responses I’ve ever received, which the provokee felt moved to share with me:

Finally, the magnitude of the entropy of the universe as a function of time is a very interesting problem for cosmology, but to suggest that a law of physics depends on it is sheer nonsense. Carroll’s statement that the second law owes its existence to cosmology is one of the dummest [sic] remarks I heard in any of our physics colloquia, apart from [redacted]’s earlier remarks about consciousness in quantum mechanics. I am astounded that physicists in the audience always listen politely to such nonsense. Afterwards, I had dinner with some graduate students who readily understood my objections, but Carroll remained adamant.

My powers of persuasion are apparently not always fully efficacious.

Also, that marvelous illustration of entropy in the bottom right of the above slide? Alan Guth’s office.

Update: Originally added as a comment, but I’m moving it up here–

The point of the “objection” is extremely simple, as is the reason why it is irrelevant. Suppose we had a thermodynamic system, described by certain macroscopic variables, not quite in equilibrium. Suppose further that we chose a random microstate compatible with the macroscopic variables (as you do, for example, in a numerical simulation). Then, following the evolution of that microstate into the future, it is overwhelmingly likely that the entropy will increase. Voila, we have “derived” the Second Law.

However, it is also overwhelmingly likely that evolving that microstate into the past will lead to an increase in entropy. Which is not true of the universe in which we live. So the above exercise, while it gets the right answer for the future, is not actually “right,” if what we care about is describing the real world. Which I do. If we want to understand the distribution function on microstates that is actually true, we need to impose a low-entropy condition in the past; there is no way to get it from purely time-symmetric assumptions.

Boltzmann’s H-theorem, while interesting and important, is even worse. It makes an assumption that is not true (molecular chaos) to reach a conclusion that is not true (the entropy is certain, not just likely, to increase toward the future — and also to the past).

The nice thing about stat mech is that almost any distribution function will work to derive the Second Law, as long as you don’t put some constraints on the future state. That’s why textbook stat mech does a perfectly good job without talking about the Big Bang. But if you want to describe why the Second Law actually works in the real world in which we actually live, cosmology inevitably comes into play.

Latest Declamations about the Arrow of Time Read More »

75 Comments

Follow the Bouncing Neutron

Stefan at Backreaction has a great post up about measuring the quantum state of a bouncing neutron. If you drop a basketball, it falls freely along a geodesic in the curved spacetime around the Earth, until it comes in contact with the floor; at that point it bounces back up and falls freely again. The cycle repeats, although basketballs come with dissipation (otherwise you wouldn’t hear them bounce), so the bounces gradually lose altitude, unless you impart some force to the ball by dribbling.

Well, the same goes for neutrons, except that there isn’t any appreciable dissipation, so the neutrons just keep bouncing. And neutrons are subatomic particles, so we can imagine observing not just their classical position, but their quantum wavefunction! And that’s what people like Valery Nesvizhevsky have been able to do, using interferometry. I won’t explain the details, since Stefan has already done it better than I could, and you should read it there.

Quantized Neutrons

So there’s both “quantum” and “gravity” involved here, although not “quantum gravity.” The neutron is quantized, but the effects are just those of a classical background gravitational field. (Quantum gravity would become involved if you measured the gravitational field caused by the neutron, and that’s a bit harder.) But still, you’re observing the effects of spacetime curvature on the wavefunction of a subatomic particle, which is pretty neat. And it’s plausible that someday measurements could improve enough that you’re measuring Newton’s inverse-square law for gravity at very small scales, which is relevant for constraining all sorts of theoretical models. And I’m guessing that you could even test the Equivalence Principle, if you could do the same exact experiment with some other kind of neutral particle (a hydrogen atom, maybe?). But really, it’s just cool, and that’s its own reward.

Also from Backreaction I learned that the current mood of the internet is:

The current mood of the Internet at www.imood.com

It’s good to be updated on these things.

Follow the Bouncing Neutron Read More »

20 Comments

Congratulations to Iggy!

The latest young cosmologist to officially ascend to the inner sanctum of the ivory tower is Ignacy Sawicki, who successfully defended his Ph.D. thesis yesterday. (Some of us are less grudging with our congratulations than others.) I swooped into Chicago for the event, then swooped right back to LA last night, from which I will swoop over to Washington DC later today. Many miles were accumulated, but I had to be there for the defense, otherwise Wayne Hu totally would have claimed credit for being Iggy’s advisor, just because they wrote more papers together.

In just a few short years Iggy has written an impressive series of in-depth papers on the possibility of modifying general relativity to explain the acceleration of the universe.

  • Cosmological structure evolution and CMB anisotropies in DGP braneworlds, with S.M. Carroll, astro-ph/0510364.
  • Near-Horizon Solution for DGP Perturbations, with Y.-S. Song and W. Hu, astro-ph/0606285.
  • Large-Scale Tests of the DGP Model, with Y.-S. Song and W. Hu, astro-ph/0606286.
  • Modified-Source Gravity and Cosmological Structure Formation, with S.M. Carroll, A. Silvestri, and M. Trodden, astro-ph/0607458.
  • The Large Scale Structure of f(R) Gravity, with Y.-S. Song and W. Hu, astro-ph/0610532.
  • Stability of Cosmological Solution in f(R) Models of Gravity, with W. Hu, astro-ph/0702278.
  • Models of f(R) Cosmic Acceleration that Evade Solar-System Tests, with W. Hu, arXiv:0705.1158.

In the Fall he’ll be taking his post-Einstein sensibilities to the socialist enclave in Greenwich Village, where such things are considered politically acceptable. Congratulations!

Congratulations to Iggy! Read More »

9 Comments

String Theory: Not Dead Yet

I know that everyone is waiting breathlessly for more opinionmongering about the String Wars. After Joe’s guest post, filled with physics and insight and all that stuff, it’s time for a punchy little polemic.

The folks at New Scientist noticed a comment of mine to the effect that, contrary to the impression one might get from the popular media, most string theorists were going about their research basically as they always have, solving equations and writing papers — curious about, but undeterred by, the surrounding furor. This surprised them, as their readers seemed to be of the opinion that string theory was “dead and buried” (actual quote). So they asked me to write a short op-ed piece, which appeared last week, and which they’ve allowed me to reprint here. Nothing deep about the substance of what physicists should be thinking about; just pointing out that string theory is still alive and kicking.

————————————————

A philandering string theorist is caught by his wife with another woman. “But darling,” he pleads, “I can explain everything!”

I didn’t invent the joke; it appeared in the satirical magazine The Onion. The amazing thing is that people got it! Apparently the person on the street is sufficiently caught up with current thinking in high-energy physics to know that string theory — the idea that the ultimate building blocks of nature are quantized loops of string, not pointlike elementary particles — is our leading candidate for a theory that would, indeed, “explain everything.”

But, despite capturing the popular imagination, string theory has fallen on hard times lately, at least in the public-relations arena. We read articles such as “Hanging on by a Thread” (USA Today), “Theorists snap over string pieces” (Nature) and “The Unraveling of String Theory” (Time). Much of the attention given to string skepticism can be traced to books by Lee Smolin and Peter Woit that appeared last year. But those aren’t the only sources; increasingly, professional physicists as well as fearless pundits outside the academy are ready to pronounce the failure of string theory’s ambitious project of uniting all of the forces of nature.

So is the jig up? Is string theory in its last throes? No, not at all. At least, not if we measure the health of the field by more strictly academic criteria. String theorists are still being hired by universities in substantial numbers; new graduate students are still flocking to string theory to do their Ph.D. work; and, most importantly, the theory continues to be our most promising idea for bridging the gap between quantum mechanics and gravity.

String theory is unique; never has so much effort been devoted to exploring an idea in physics without the benefit of any direct experimental tests. One important reason for this has been the absence of experimental surprises in all of high-energy physics; for thirty years, the Standard Model of particle physics has resisted all challenges. But even that would not have been enough to coax theorists into thinking about the famously difficult problem of quantum gravity if string theory hadn’t come along to present a surprisingly promising approach.

It was realized in the 1970’s that string theory was a theory of quantum gravity, whether we liked it or not — certain vibrating strings have the right properties to represent gravitons, carriers of the gravitational force. Already, this feature distinguished string theory from other approaches; whereas head-on assaults on quantum gravity tended to run into dead ends, here was a quantum theory that insisted on gravity!

In the 1980’s the triumph of the Standard Model became complete, and work by Michael Green and John Schwarz demonstrated that string theory was a consistent framework. Physicists who would never have though of devoting themselves to quantum gravity quickly dived into string theory. It was a heady time, when promises to compute the mass of the electron any day now were thrown back and forth. True, there were five different versions of string theory, and they all lived in ten dimensions. The trick would be to find the right way to compactify those extra dimensions down to the four we know and love, and the connection to observation would be established.

That didn’t happen, but the 1990’s were nevertheless a boom time. It was realized that those five versions of the theory were different manifestations of a single underlying structure, M-theory. Tools were developed, in certain special circumstances, to tackle a famous problem introduced by Stephen Hawking in the 1970’s — calculating the entropy of black holes. Amazingly, string theory gave precisely the right answer. More and more people became convinced that there must be something right about this theory, even if we didn’t understand it very well, and even if connection to experiments remained elusive.

Since 2000, progress has slowed. In the mid-90’s it seemed as if there was a revolution every month, and — perhaps unsurprisingly — that’s no longer the case. Instead of finding a unique way to go from ten dimensions down to four, current ideas suggest that we may be faced with 10500 or more possibilities, which is pretty non-unique. It might be — maybe — that only a tiny number of those possibilities are anywhere close to the world we observe, so that there are still concrete predictions to be made. We don’t know, and it may be wishful thinking.

The truth remains — the miracles that got people excited about string theory in the first place haven’t gone away. The biggest obstacle to progress is that we don’t understand string theory very well; it’s a collection of bits and pieces that show tantalizing promise, but don’t yet fit together into a coherent whole. But it is a theory of quantum gravity, it is compatible with everything we know about particle physics, and it continues to provide startling new ways to think about space and time.

Meanwhile, spinoffs from string theory continue to proliferate. Ideas about higher-dimensional branes have re-invigorated model-building in more conventional particle physics. The theory has provided numerous deep insights into pure mathematics. Cosmologists thinking about the early universe increasingly turn to ideas from string theory. And a promising new approach has connected string theory to the dynamics of the quark-gluon plasma observed at particle accelerators.

Ultimately, of course, string theory must make contact with data in order to remain relevant and interesting. But profound ideas don’t come with expiration dates; that contact might come next year, ten years from now, or a century from now. In the meantime, the relative importance of string theory within the high-energy physics community is bound to take a hit, as results from the Large Hadron Collider promise to bring us firmly beyond the Standard Model and present theorists with new experimental puzzles to solve. A resurgent interest in more phenomenological particle physics is already easy to discern in hiring patterns and graduate-student interests.

But string theory isn’t going to disappear. Gravity exists, and quantum mechanics exists, and the two are going to have to be reconciled. Ambitious theoretical physicists will continue to pursue string theory, at least until an even better idea comes along — and even then, the odds are good that something stringy will be part of the ultimate story.

String Theory: Not Dead Yet Read More »

66 Comments

We Know the Answer!

Chad Orzel is wondering about the origin of some irritating habits in science writing. His first point puts the finger right on the issue:

Myth 1: First-person pronouns are forbidden in scientific writing. I have no idea where students get the idea that all scientific writing needs to be in the passive voice, but probably three quarters of the papers I get contain sentences in which the syntax has been horribly mangled in order to avoid writing in the first person.

It’s not exactly right to call this a “myth”; as Andre from Biocurious points out in comments, the injuction to use the passive voice is often stated quite explicitly. There’s even an endlessly amusing step-by-step instruction guide for converting your text from active to passive voice. What would Strunk and White say?

The same goes for using “we” rather than “I,” even if you’re the only person writing. There are also guides that make this rule perfectly explicit. The refrain in this one is:

Write in the third person (“The aquifer covers 1000 square kilometers”) or the first person plural (“We see from this equation that acceleration is proportional to force”). Avoid using “I” statements.

Interestingly, these habits did not just emerge organically as scientific communication evolved — they were, if you like, designed. I learned this from a talk given by Evelyn Fox Keller some years ago, which unfortunately I’ve never been able to find in print. It goes back to the earliest days of the scientific revolution, when Francis Bacon and others were musing on how this new kind of approach to learning about the world should be carried out. Bacon decided that it was crucially important to emphasize the objectivity of the scientific process; as much as possible, the individual idiosyncratic humanity of the scientists was to be purged from scientific discourse, making the results seem as inevitable as possible.

To this end, Bacon was quite programmatic, suggesting a list of ways to remove the taint of individuality from the scientific literature. Passive voice was encouraged, and it was (apparently, if Keller was right and I’m remembering correctly) Bacon who first insisted that we write “we will show” in the abstracts of our single-author papers.

It always seemed a little unnatural to me, and when it came time to write a single-author paper (which I tend not to do, since collaborating is much more fun) I went with the first-person singular. I decided that if it was good enough for Sidney Coleman, it should be good enough for me.

Keller has a more well-known discussion of the rhetoric of Francis Bacon, reprinted in Reflections on Gender and Science. Here she examines Bacon’s personification of the figure of Nature, specifically with regard to gender roles. Bacon was one of the first to introduce the metaphor of Nature as a woman to be seduced/conquered. Sometimes the imagery is gentle, sometimes less so; here are some representative quotes from Bacon to give the gist.

“Let us establish a chaste and lawful marriage between Mind and Nature.”

“My dear, dear boy, what I plan for you is to unite you with things themselves in a chaste, holy, and legal wedlock. And from this association you will insure an increase beyond all the hopes and prayers of ordinary marriages, to wit, a blessed race of Heroes and Supermen.”

“I am come in very truth leading you to Nature with all her children to bind her to your service and make her your slave.”

“I invite all such to join themselves, as true sons of knowledge, with me, that passing by the outer courts of nature, which numbers have trodden, we may find a way at length into her inner chambers.”

“For you have but to follow and as it were hound nature in her wanderings, and you will be able, when you like, to lead and drive her afterwards to the same place again.”

[Science and technology do not] “merely exert a gentle guidance over nature’s course; they have the power to conquer and subdue her, to shake her to her foundations.”

But, while Nature is a shy female waiting to be seduced and conquered, we also recognize that Nature is a powerful, almost God-like force. Tellingly, when Bacon talks about this aspect, the metaphorical gender switches, and now Nature is all too male:

“as if the divine nature enjoyed the kindly innocence in such hide-and-seek, hiding only in order to be found, and with characteristic indulgence desired the human mind to join Him in this sport.”

So much meaning lurking in a few innocent pronouns! We like to pretend that the way we do science, and the way we conceptualize our activity, is more or less inevitable; but there are a lot of explicit choices along the way.

We Know the Answer! Read More »

52 Comments

Guest Post: Joe Polchinski on Science or Sociology?

Science or Sociology?
Joseph Polchinski, 5/20/07

This is a continuation of the on-line discussion between Lee Smolin and myself, which began with my review of his book and has now continued with his response. A copy of this exchange (without the associated comment threads) is here.

Dear Lee,

Thank you for your recent response to my review. It will certainly be helpful in clarifying the issues. Let me start with your wish that I do more to address the broader issues in your book. When I accepted the offer to review these two books, I made two resolutions. The first was to stick to the physics, because this is our ultimate goal, and because it is an area where I can contribute expertise. Also, keeping my first resolution would help me to keep the second, which was to stay positive. I am happy that my review has been well-received. Your response raises some issues of physics, and these are the most interesting things to discuss, but I will also address some of the broader issues you raise, including the process of physics, ethics, and the question in the title. Let me emphasize that I have no desire to criticize you personally, but in order to present my point of view I must take serious issue both with your facts and with the way that they are presented.

Regarding your points:

The fictitious prediction of a non-positive cosmological constant. This is a key point in your book, and the explanation that you now give makes no logical sense. In your book you say (A) “… it [a non-positive cosmological constant] was widely understood to be a consequence of string theory.” You now justify this by the argument that a non-positive cosmological constant is a consequence of unbroken supersymmetry (true), so A would follow from (B) Unbroken supersymmetry was widely understood to be a consequence of string theory. But even if this were true, it would not support your story about the observation of the dark energy leading to a “genuine crisis, … a clear disagreement between observation and a prediction of string theory.” There would already have been a crisis, since supersymmetry must obviously be broken in nature; seeing the dark energy would not add to this. But in fact the true situation, as you can find in my book or in many review articles, was closer to the opposite of B than to B: (B’) Supersymmetry is broken in almost all Calabi-Yau vacua of heterotic string theory. We have no controlled examples because at least one modulus rolls off, usually to a regime where we cannot calculate. The solution to this problem may have to wait until we have a non-perturbative formulation of gravity, or even a solution to the cosmological constant problem.

In your response you largely raise issues surrounding B’, including the Witten quote, but I want to return to what you have actually written in your book. It is a compelling story, which leads into your discussion of “a group of experts doing what they can to save a cherished theory in the face of data that seem to contradict it.” It surely made a big impression on every reader; it was mentioned in several blogs, and in Peter Shor’s Amazon review. And it never happened. It is an example of something that that happens all too often in your book: you have a story that you believe, or want to believe, and you ignore the facts.

You go on to challenge the ethics of string theorists in regard to how they presented the issue of moduli stabilization in their talks and papers. I am quite sure that in every colloquium that I gave I said something that could be summarized as “We do not understand the vacuum in string theory. The cosmological constant problem is telling us that there is something that we do not understand about our own vacuum. And, we do not know the underlying principle of string theory. These various problems may be related.” The cosmological constant and the nature of string theory seemed much more critical than the moduli stabilization problem, and these are certainly what I and most other string theorists emphasized.

This scientific judgment has largely been borne out in time. In 1995-98 these incredible new nonperturbative tools were developed, and over the next few years many string theorists worked on the problem of applying them to less and less supersymmetric situations, culminating in the construction of stabilized vacua. Obviously many questions remain, and these are widely and openly debated. It seems like a successful scientific process: people knew what the important problems were, worked in various directions (a fair number did work on moduli stabilization over the years), and when the right tools became available the problem was solved. As you point out, the stabilization problem is nearly one hundred years old, and now string theorists (primarily the younger generation, I might add) have solved it. You are portraying a crisis where there is actually a major success, and you are creating an ethical issue where there is none.

AdS/CFT duality. You raise the issue of the existence of the gauge theory. There are two points here. First, Wilson’s construction of quantum field theory has been used successfully for 40 years. It is used in a controlled way by condensed matter physicists, lattice gauge theorists, constructive quantum field theorists, and many others. To argue that a technique that is so well understood does not apply to the case at hand, the scientific ethic requires that you do more than just say Not proven! Sociology! as you have done. You need to give an argument, ideally pointing to a calculation that one could do, or at least discuss, in which one would get the wrong answer.

I have given a specific argument why we are well within the domain of applicability of Wilson: there are 1+1 and 2+1 dimensional versions of AdS/CFT, which are also constructions of quantum gravity, and for which the gauge theory is super-renormalizable (and there are no chiral fermions): the counterterms needed to reach the supersymmetric continuum limit can be calculated in closed form – thus there is an algorithmic definition of the gauge theory side of the duality. You could perhaps argue that there will be a breaking of supersymmetry that will survive in the continuum limit, and we could sit down and do the calculation. But I know what this answer is, because I have done this kind of calculation many times (it is basically just dimensional analysis). Similar calculations, for rotational invariance and chiral symmetry, are routine in lattice gauge theory.

As a further ethical point, in your book you state that it is astounding that Gary Horowitz and I ignore the question of the existence of the gauge theory, and you then use this to make a point about groupthink (this is in your chapter on sociology). While you were writing your book, you and I discussed the above points in detail, so you knew that we had not ignored the issue but had thought about it deeply. You do not even acknowledge the existence of a scientific counterargument to your statement, and in saying that Gary and I ignore the issue you are omitting facts that are known to you in order to turn an issue of science into one of sociology. Again you impose your own beliefs on the facts; thus I am reluctant to accept as accurate the various statements that you attribute elsewhere to anonymous string theorists and others.

You raise again the issue of a weak form of Maldacena duality. As you know, it is very difficult to find a sensible weak form that is consistent with all the evidence and yet not the strong form. In my review I have gone through your book and papers and identified three proposals, and explained why each is wrong. Again, you have not acknowledged the existence of scientific counterarguments, but have just reasserted your original point. If your arguments had been made in a serious way, I would expect that you would have given some deep thought to them and be ready to defend them.

There are some interesting points, one of which I will turn to next.

The role of rigor and calculation. Here we disagree. Let me give some arguments in support of my point of view. A nice example is provided by your paper `The Maldacena conjecture and Rehren duality’ with Arnsdorf, hep-th/0106073.

You argue that strong forms of the Maldacena duality are ruled out because Rehren duality implies that the bulk causal structure is always the fixed causal structure of AdS_5, and so there cannot be gravitational bending of light. But this would in turn imply that there cannot be refraction in the CFT, because the causal structure in the bulk projects to the boundary: null geodesics that travel from boundary to boundary, through the AdS_5 bulk, connect points that lie on null boundary geodesics. Now, the gauge theory certainly does have refraction: there are interactions, so in any state of finite density the speed of propagation will be less than 1. (Since Rehren duality does not refer to the value of the coupling, this argument would hold even at weak coupling, where the refraction can be calculated explicitly.)

You have emphasized that Rehren duality is rigorous, so apparently the problem is that you have assumed that it implies more than it does. Generally, rigorous results have very specific assumptions and very precise consequences. In physics, which is a process of discovery, this can make them worse than useless, since one tends to assume that their assumptions, and their implications, are broader than they actually are. Further, as this example shows, a chain of reasoning is only as strong as its weakest step. Rigor generally makes the strongest steps stronger still – to prove something it is necessary to understand the physics very well first – and so it is often not the critical point where the most effort should be applied. Your paper illustrates another problem with rigor: it is hard to get it right. If one makes one error the whole thing breaks, whereas a good physical argument is more robust. Thus, your paper gives the appearance of rigor, yet reaches a conclusion that is physically nonsensical.

This question of calculation deserves further discussion, and your paper with Arnsdorf makes for an interesting case study, in comparison with mine with Susskind and Toumbas, hep-th/9903228. (I apologize for picking so much on this one paper, but it really does address many of the points at issue, and it is central to the discussion of AdS/CFT in your various reviews.) You argue that there are two difficulties with AdS/CFT: that strong forms of it are inconsistent with the bending of light by gravitational fields, and that the evidence supports a weaker relation that you call conformal induction. We also present two apparent paradoxes: that the duality seems to require acausal behavior, and negative energy densities, in the CFT. The papers differ in that yours contains a handful of very short equations, while ours contains several detailed calculations. What we do is to translate our argument from the imprecise language of words to the precise language of equations.

We then find that the amount of negative energy that must be `borrowed’ is exactly consistent with earlier bounds of Ford and Roman, gr-qc/9901074, and that a simple quantum mechanical model shows that an apparent acausality in the classical variables is in fact fully causal when one looks at the full quantum state. Along the way we learn something interesting about how AdS/CFT works.

This process of translation of an idea from words to calculation will be familiar to any theoretical physicist. It is often the hardest part of a problem, and the point where the greatest creativity enters. Many word-ideas die quickly at this point, or are transmuted or sharpened. Had you applied it to your word-ideas, you would probably have quickly recognized their falsehood. Further, over-reliance on the imprecise language of words is surely correlated with the tendency to confuse scientific arguments with sociological ones.

Finally, I have recently attended a number of talks by leading workers in LQG, at a KITP workshop and the April APS meeting. I am quite certain that the standard of rigor was not higher than in string theory or other areas of physics. In fact, there were quite a number of uncontrolled approximations. This is not necessarily bad – I will also use such approximations when this is all that is available – but it is not rigor. So your insistence on rigor does not actually describe how science is done even in your own field.

Guest Post: Joe Polchinski on Science or Sociology? Read More »

109 Comments

A Glimpse Into Boltzmann’s Actual Brain

You’ve heard the “Boltzmann’s Brain” argument (here and here, for example). It’s a simple idea, which is put forward as an argument against the notion that our universe is just a thermal fluctuation. If the universe is an ordinary thermodynamic system in equilibrium, there will be occasional fluctuations into low-entropy states. One of these might look like the Big Bang, and you might be tempted to conclude that such a process explains the arrow of time in our universe. But it doesn’t work, because you don’t need anything like such a huge fluctuation. There will be many smaller fluctuations that do just as well; the minimal one you might imagine would be a single brain-sized collection of particles that just has time to look around and go Aaaaaagggghhhhhhh before dissolving back into equilibrium. (These days a related argument is being thrown around in the context of eternal inflation — not exactly the same, because we’re not assuming the ensemble is in equilibrium, but similar in spirit.)

Boltzmann wasn’t the one to come up with the “brain” argument; I’m not sure who did, but I first heard it articulated clearly in a paper by Albrecht and Sorbo. It’s the maybe-our-universe-is-a-fluctuation idea that goes back to Boltzmann. Except it’s not actually his, as we can see by looking at Boltzmann’s original paper! (pdf) The reference is Nature 51, 413 (1895), as tracked down by Alex Vilenkin. Don Page copied it from a crumbling leather-bound volume in his local library, and the copy was scanned in by Andy Albrecht. The discussion is just a few paragraphs at the very end of a short paper.

I will conclude this paper with an idea of my old assistant, Dr. Schuetz.

We assume that the whole universe is, and rests for ever, in thermal equilibrium. The probability that one (only one) part of the universe is in a certain state, is the smaller the further this state is from thermal equilibrium; but this probability is greater, the greater is the universe itself. If we assume the universe great enough, we can make the probability of one relatively small part being in any given state (however far from the state of thermal equilibrium), as great as we please. We can also make the probability great that, though the whole universe is in thermal equilibrium, our world is in its present state. It may be said that the world is so far from thermal equilibrium that we cannot imagine the improbability of such a state. But can we imagine, on the other side, how small a part of the whole universe this world is? Assuming the universe great enough, the probability that such a small part of it as our world should be in its present state, is no longer small.

If this assumption were correct, our world would return more and more to thermal equilibrium; but because the whole universe is so great, it might be probable that at some future time some other world might deviate as far from thermal equilibrium as our world does at present. Then the afore-mentioned H-curve would form a representation of what takes place in the universe. The summits of the curve would represent the worlds where visible motion and life exist.

So even Boltzmann doesn’t want credit for the idea, which he attributes to his old assistant. Andy Albrecht points out that, in order to preserve the all-important alliteration, perhaps we should be calling them “Schuetz’s Schmartz.”

A Glimpse Into Boltzmann’s Actual Brain Read More »

18 Comments

How Did the Universe Start?

I’m on record as predicting that we’ll understand what happened at the Big Bang within fifty years. Not just the “Big Bang model” — the paradigm of a nearly-homogeneous universe expanding from an early hot, dense, state, which has been established beyond reasonable doubt — but the Bang itself, that moment at the very beginning. So now is as good a time as any to contemplate what we already think we do and do not understand. (Also, I’ll be talking about it Saturday night on Coast to Coast AM, so it’s good practice.)

There is something of a paradox in the way that cosmologists traditionally talk about the Big Bang. They will go to great effort to explain how the Bang was the beginning of space and time, that there is no “before” or “outside,” and that the universe was (conceivably) infinitely big the very moment it came into existence, so that the pasts of distant points in our current universe are strictly non-overlapping. All of which, of course, is pure moonshine. When they choose to be more careful, these cosmologists might say “Of course we don’t know for sure, but…” Which is true, but it’s stronger than that: the truth is, we have no good reasons to believe that those statements are actually true, and some pretty good reasons to doubt them.

I’m not saying anything avant-garde here. Just pointing out that all of these traditional statements about the Big Bang are made within the framework of classical general relativity, and we know that this framework isn’t right. Classical GR convincingly predicts the existence of singularities, and our universe seems to satisfy the appropriate conditions to imply that there is a singularity in our past. But singularities are just signs that the theory is breaking down, and has to be replaced by something better. The obvious choice for “something better” is a sensible theory of quantum gravity; but even if novel classical effects kick in to get rid of the purported singularity, we know that something must be going on other than the straightforward GR story.

There are two tacks you can take here. You can be specific, by offering a particular model of what might replace the purported singularity. Or you can be general, trying to reason via broad principles to argue about what kinds of scenarios might ultimately make sense.

Many scenarios have been put forward among the “specific” category. We have of course the “quantum cosmology” program, that tries to write down a wavefunction of the universe; the classic example is the paper by Hartle and Hawking. There have been many others, including recent investigations within loop quantum gravity. Although this program has led to some intriguing results, the silent majority or physicists seems to believe that there are too many unanswered questions about quantum gravity to take seriously any sort of head-on assault on this problem. There are conceptual puzzles: at what point does spacetime make the transition from quantum to classical? And there are technical issues: do we really think we can accurately model the universe with only a handful of degrees of freedom, crossing our fingers and hoping that unknown ultraviolet effects don’t completely change the picture? It’s certainly worth pursuing, but very few people (who are not zero-gravity tourists) think that we already understand the basic features of the wavefunction of the universe.

At a slightly less ambitious level (although still pretty darn ambitious, as things go), we have attempts to “smooth out” the singularity in some semi-classical way. Aguirre and Gratton have presented a proof by construction that such a universe is conceivable; essentially, they demonstrate how to take an inflating spacetime, cut it near the beginning, and glue it to an identical spacetime that is expanding the opposite direction of time. This can either be thought of as a universe in which the arrow of time reverses at some special midpoint, or (by identifying events on opposite sides of the cut) as a one-way spacetime with no beginning boundary. In a similar spirit, Gott and Li suggest that the universe could “create itself,” springing to life out of an endless loop of closed timelike curves. More colorfully, “an inflationary universe gives rise to baby universes, one of which turns out to be itself.”

And of course, you know that there are going to be ideas based on string theory. For a long time Veneziano and collaborators have been studying what they dub the pre-Big-Bang scenario. This takes advantage of the scale-factor duality of the stringy cosmological field equations: for every cosmological solution with a certain scale factor, there is another one with the inverse scale factor, where certain fields are evolving in the opposite direction. Taken literally, this means that very early times, when the scale factor is nominally small, are equivalent to very late times, when the scale factor is large! I’m skeptical that this duality survives to low-energy physics, but the early universe is at high energy, so maybe that’s irrelevant. A related set of ideas have been advanced by Steinhardt, Turok, and collaborators, first as the ekpyrotic scenario and later as the cyclic universe scenario. Both take advantage of branes and extra dimensions to try to follow cosmological evolution right through the purported Big Bang singularity; in the ekpyrotic case, there is a unique turnaround point, whereas in the cyclic case there are an infinite number of bounces stretching endlessly into the past and the future.

Personally, I think that the looming flaw in all of these ideas is that they take the homogeneity and isotropy of our universe too seriously. Our observable patch of space is pretty uniform on large scales, it’s true. But to simply extrapolate that smoothness infinitely far beyond what we can observe is completely unwarranted by the data. It might be true, but it might equally well be hopelessly parochial. We should certainly entertain the possibility that our observable patch is dramatically unrepresentative of the entire universe, and see where that leads us.

Landscape

How Did the Universe Start? Read More »

98 Comments

Dark Energy Fundamentalism: Simon White Lays the Smackdown

Among the many fascinating blog posts you would get from me if I didn’t have a day job is one on “Why Everyone Loves to Hate on Particle Physicists.” I would not be in favor of the hating, but I would examine it as a sociological phenomenon. But now we have an explicit example, provided by respected astrophysicist Simon White, who has put a paper on the arXiv (apparently destined to appear in Nature, if it hasn’t already) entitled Fundamentalist physics: why Dark Energy is bad for Astronomy. Here’s the abstract:

Astronomers carry out observations to explore the diverse processes and objects which populate our Universe. High-energy physicists carry out experiments to approach the Fundamental Theory underlying space, time and matter. Dark Energy is a unique link between them, reflecting deep aspects of the Fundamental Theory, yet apparently accessible only through astronomical observation. Large sections of the two communities have therefore converged in support of astronomical projects to constrain Dark Energy. In this essay I argue that this convergence can be damaging for astronomy. The two communities have different methodologies and different scientific cultures. By uncritically adopting the values of an alien system, astronomers risk undermining the foundations of their own current success and endangering the future vitality of their field. Dark Energy is undeniably an interesting problem to attack through astronomical observation, but it is one of many and not necessarily the one where significant progress is most likely to follow a major investment of resources.

Simon contrasts the way that astronomers like to work — “observatory”-style instruments, aimed at addressing many problems and used by a large number of small groups — with the favored mode of particle physicists — dedicated experiments, controlled by large groups, aimed largely at a single purpose. He holds up the Hubble Space Telescope as a very successful example of the former philosophy, and WMAP as an (also quite successful) example of the latter. HST does all sorts of things, and many of its greatest contributions weren’t even imagined when it was first built; WMAP was aimed like a laser beam on a single target (the cosmic microwave background), and when it’s done everything it can on that observation it will gracefully expire.

His real worry is that the emergence of dark energy as a deep problem introduces the danger that the particle-physics way of doing things will take over astronomy. On the one hand, trying to understand the nature of the dark energy is undoubtedly interesting and important, and might only be addressable via astronomical observations; on the other, there is some danger that we devote too much of our resources to a small number of monstrous collaborations that are all tackling that one problem, to the ultimate detriment of the agile and creative nature of traditional astronomy.

I kind of agree, actually. More specifically, this is one of those cases where I disagree with all of the background philosophizing, but am sympathetic to the ultimate conclusions. (In contrast to the framing discussion, where I’m sympathetic to the philosophizing but disagree when it comes down to specific recommendations.) Dark energy is extremely interesting, and any little bit of info we can get about it is useful; on the other hand, there is a fairly narrow set of things that we can do to get info about it, and concentrating on doing those things to the detriment of the rest of astronomy would be a bad thing. Happily, astronomy is one of those nice fields in which it’s hard to learn about one thing without learning about something else; in particular, as the dark energy task force has recognized, the actual things that can be usefully observed in an attempt to get at dark energy will inevitably teach us many interesting things about galaxies, clusters, and large-scale structure.

Still, it’s worthwhile not going overboard. More than one working astronomer has grumbled that the way to get funding these days is to insert “dark energy” randomly into each paragraph of one’s proposal. (Not that such grumblings make it true; scientists applying for funding love to grumble.) But the backstory of “particle physics” vs. “astrophysics” (or “every other kind of physics”) is a misleading one. It’s not primarily a matter of cultures or sociology; it’s a matter of the science questions we are trying to address. There is something about particle physics that is different from most other kinds of science — you need to spend a lot of money on big, expensive, long-term experiments to get detailed information about the questions you are trying to ask. The LHC is an expensive machine. But if you choose to spend half as much money on building an accelerator, you won’t get half the results — you’ll get nothing. It might be that the results are not worth the cost; I disagree, but that’s a worthwhile debate to have. But if you decide that this kind of science is worth doing for what it costs, then big collaborations and expensive machines are the only way to get it done. (Not, obviously, the only way to get information about particle physics; that can come from all sorts of clever smaller-scale experiments. But if you want the kind of detailed information necessary to figure out the structure of what is really going on at high energies, big accelerators are the way to go.)

The issue for astrophysicists is not whether they want to continue to be small-scale and nimble and charming vs. giving into the particle-physics Borg. It’s what kind of questions are interesting, and how best to get at them. There is plenty of room out there for world-class astronomy of the quirky small-science type. But there’s also an increasing need for big targeted projects to answer otherwise intractable questions. Having a passionate debate about how to balance our portfolio is a good thing; casting aspersions on the sociological tendencies of our colleagues isn’t really relevant to the discussion.

Update: Rob Knop chimes in.

From comments: Here’s video/audio for the talk at KITP that Simon White gave last summer, on which this paper is based. (Thanks to John Edge.)

Dark Energy Fundamentalism: Simon White Lays the Smackdown Read More »

59 Comments
Scroll to Top