Science

arxiv Find: Stars in Other Universes

Fred Adams wonders whether we could still have stars if the constants of nature were very different. Answer: very possibly! It’s in arxiv:0807.3697:

Motivated by the possible existence of other universes, with possible variations in the laws of physics, this paper explores the parameter space of fundamental constants that allows for the existence of stars. To make this problem tractable, we develop a semi-analytical stellar structure model that allows for physical understanding of these stars with unconventional parameters, as well as a means to survey the relevant parameter space. In this work, the most important quantities that determine stellar properties — and are allowed to vary — are the gravitational constant $G$, the fine structure constant $alpha$, and a composite parameter $C$ that determines nuclear reaction rates. Working within this model, we delineate the portion of parameter space that allows for the existence of stars. Our main finding is that a sizable fraction of the parameter space (roughly one fourth) provides the values necessary for stellar objects to operate through sustained nuclear fusion. As a result, the set of parameters necessary to support stars are not particularly rare. In addition, we briefly consider the possibility that unconventional stars (e.g., black holes, dark matter stars) play the role filled by stars in our universe and constrain the allowed parameter space.

I’ve never thought that our knowledge of what constituted “intelligent life” was anywhere near good enough to start making statements about the conditions under which it could form, apart from fairly weak stuff like “life probably can’t exist if the universe only lasts for a Planck time.” So when anthropic arguments start to hinge on thinking that fractional changes in the mass of this or that nucleus would result in a universe with no observers, it seems more prudent to admit that we just don’t know. But putting any anthropic considerations aside, it’s still interesting to ask what the universe would look like if the constants of nature were completely different. How robust are the starry skies?

arxiv Find: Stars in Other Universes Read More »

41 Comments

A New CMB Anomaly?

One of the important features of the universe around us is that, on sufficiently large scales, it looks pretty much the same in every direction — “isotropy,” in cosmology lingo. There is no preferred direction to space, in which the universe would look different than in the perpendicular directions. The most compelling evidence for large-scale isotropy comes from the Cosmic Microwave Background (CMB), the leftover radiation from the Big Bang. It’s not perfectly isotropic, of course — there are tiny fluctuations in temperature, which are pretty important; they arise from fluctuations in the density, which grow under the influence of gravity into the galaxies and clusters we see today. Here they are, as measured by the WMAP satellite.

Nevertheless, there is a subtle way for the universe to break isotropy and have a preferred direction: if the tiny observed perturbations somehow have a different character in one direction than in others. The problem is, there are a lot of ways this could happen, and there is a huge amount of data involved with a map of the entire CMB sky. A tiny effect could be lurking there, and be hard to see; or we could see a hint of it, and it would be hard to be sure it wasn’t just a statistical fluke.

In fact, at least three such instances of apparent large-scale anisotropies have been claimed. One is the “axis of evil” — if you look at only the temperature fluctuations on the very largest scales, they seem to be concentrated in a certain plane on the sky. Another is the giant cold spot (or “non-Gaussianity,” if you want to sound like an expert) — the Southern hemisphere seems to have a suspiciously coherent blob of slightly lower than average CMB temperature. And then there is the lopsided universe — the total size of the fluctuations on one half of the sky seems to be slightly larger than on the other half.

All of these purported anomalies in the data, while interesting, are very far from being definitive. Although most people seem to agree that they are features of the data from WMAP, it’s hard to tell whether they are all just statistical flukes, or subtle imperfections in the satellite itself, or contamination by foregrounds (like our own galaxy), or real features of the universe.

Now we seem to have another such anomaly, in which the temperature fluctuations in the CMB aren’t distributed perfectly isotropically across the sky. It comes by way of a new paper by Nicolaas Groeneboom and Hans Kristian Eriksen:

Bayesian analysis of sparse anisotropic universe models and application to the 5-yr WMAP data

Sexy title, eh? Here is the upshot: Groeneboom and Eriksen looked for what experts would call a “quadrupole pattern of statistical anisotropy.” Similar to the lopsided universe effect, where the fluctuations seem to be larger on one side of the sky than the other, this is an “elongated universe” effect — fluctuations are larger along one axis (in both directions) as compared to the perpendicular plane. Here is a representation of the kind of effect we are talking about — not easy to make out, but the fluctuations are supposed to be a bit stronger near the red dots than in the strip in between them.

It’s not a very large signal — “3.8 sigma,” in the jargon of the trade, where 3 sigma basically means “begin to take seriously,” but you might want to get as high as 5 sigma before you say “there definitely seems to be something there.” However, the WMAP data come in different frequencies (V-band and W-band), and the effect seems to be there in both bands. Furthermore, you can look for the effect separately at large angular scales and at small angular scales, and you find it in both cases (with somewhat lower statistical significance, as you might expect). So it’s far from being a gold-plated discovery, but it doesn’t seem to be a complete fluke, either.

Remember, looking for any specific effect is quite a project — there is a lot of data, and the analysis involves manipulating huge matrices, and you have to worry about foregrounds and instrumental effects. So why were these nice folks looking for a power asymmetry along a preferred axis in the sky? Well, you might recall my paper with Lotty Ackerman and Mark Wise, described in the “Anatomy of a Paper” series of blog posts (I, II, III). We were interested in whether the (hypothetical) period of inflation in the early universe might have been anisotropic — expanding just a bit faster in one direction than in the others — and if so, how it would show up in the CMB. What we found was that the natural expectation was a power asymmetry along the preferred axis, and gave a bunch of formulas by which observers could actually look for the effect. That is what Nicolaas and Hans Kristian did, with every expectation that they would establish an upper limit on the size of our predicted effect, which we had labelled g*. But instead, they found it! The data are saying that

g_* = 0.15 pm 0.039,.

So naturally, Lotty and Mark and I are brushing up on our Swedish in preparation for our upcoming invitations to Stockholm. Okay, not quite. In fact, it’s useful to be very clear about this, given the lessons that were (one hopes) learned in John’s series of posts about Higgs hunting. Namely: small, provocative “signals” such as this happen all the time. It would be completely irresponsible just to take every one of them at face value as telling you something profound about the universe. And the more surprising the result — and this one would be pretty darned surprising — the more skeptical and cautious we have every right to be.

So what are we supposed to think? Certainly not that these guys are just jokers that don’t know how to analyze CMB data; the truth couldn’t be more different. But analyzing data like this is really hard, and other groups will doubtless jump in and do their own analyses, as it should be. It’s certainly possible that there is a small systematic effect in WMAP — “correlated noise” — rather than in the universe. The authors have considered this, of course, and it doesn’t seem to fit the finding very comfortably, but it’s a possibility. The very good news is that the kind of correlated noise one would expect from WMAP (given the pattern it used to scan across the sky) is completely different from that the we would worry about from the upcoming Planck mission, scheduled to launch next year.

Or, of course, we could be learning something deep about the universe. Maybe even that inflation was anisotropic, as Lotty and Mark and I contemplated. Or, perhaps more plausibly, there is some single real effect in the universe that is conspiring to give us all of the tantalizing hints contained in the various anomalies listed above. We don’t know yet. That’s what makes it fun.

A New CMB Anomaly? Read More »

37 Comments

Beyond the Room

I’m sure Ruben Bolling is making fun of people I disagree with, and not of me.

The underlying point is a good one, though, and one that is surprisingly hard for people thinking about cosmology to take to heart: without actually looking at it, there is no sensible a priori reasoning that can lead us to reliable knowledge about parts of the universe we haven’t observed. Einstein and Wheeler believed that the universe was closed and would someday recollapse, because a universe that was finite in time felt right to them. The universe doesn’t care what feels right, or what “we just can’t imagine”; so all possibilities should remain on the table.

On the other hand, that doesn’t mean we can’t draw reasonable a posteriori conclusions about the unobservable universe, if the stars align just right. That is, if we had a comprehensive theory of physics and cosmology that successfully passed a barrage of empirical tests here in the universe we do observe, and made unambiguous predictions for the universe that we don’t, it would not be crazy to take those predictions seriously.

We don’t have that theory yet, but we’re working on it. (Where “we” means an extremely tiny fraction of working scientists, who receive an extremely disproportionate amount of attention.)

Beyond the Room Read More »

31 Comments

Everything You Ever Wanted to Know About Quantum Mechanics, But Were Afraid to Ask

Sorry, not in this post, but upcoming. I’m scheduled to do another episode of Bloggingheads.tv with David Albert, and we’ve decided to spend the whole hour talking about quantum mechanics. Start with the basics, try to explain this crazy theory and some of its outlandish consequences in ways that anyone can understand, and then dig into some of the mysteries of measurement, superposition, and reality.

So — what do you want to know? What are the really interesting questions about QM that we should be talking about?

One thing I don’t think we science-explainers get as clear as we could is the idea of the Wave Function of the Universe. It sounds scary and/or pretentious — an older colleague of mine at MIT once said “I’m too young to talk about the wave function of the universe.” But it’s a crucial fact of quantum mechanics (arguably the crucial fact) that, unlike in classical mechanics, when you consider two electrons you don’t just have a separate state for each electron. You have a single wave function that describes the two-electron system. And that’s true for any number of particles — when you consider a bigger system, you don’t “add more wavefunctions,” you beef up your single wave function so that it describes more particles. There is only ever one wave function, and you can call it “of the universe” if you like. Deep, man.

Here is another thing: in quantum mechanics, you can “add two states together,” or “take their average.” (Hilbert space is a vector space with an inner product.) In classical mechanics, you can’t. (Phase space is not a vector space at all.) How big a deal is that? Is there some nice way we can explain what that means in terms your grandmother could understand, even if your grandmother is not a physicist or a mathematician?

(See also Dave Bacon’s discussion of teaching quantum mechanics as a particular version of probability theory. There are many different ways of answering the question “What is quantum mechanics?”)

Everything You Ever Wanted to Know About Quantum Mechanics, But Were Afraid to Ask Read More »

165 Comments

What Good is a Theory?

Over at Edge, they’ve posted a provocative article by Chris Anderson, editor of Wired magazine: “The End of Theory — Will the Data Deluge Makes the Scientific Method Obsolete?” We are certainly entering an age where experiments create giant datasets, often so unwieldy that we literally can’t keep it all — as David Harris notes, the LHC will be storing about 15 petabytes of data per year, which sounds like a lot, until you realize that it will be creating data at a rate of 10 petabytes per second. Clearly, new strategies are called for; in particle physics, the focus is on the “trigger” that makes quick decisions about which events to keep and which to toss away, while in astronomy or biology the focus is more on sifting through the data to find unanticipated connections. Unfortunately, Anderson takes things a bit too far, arguing that the old-fashioned scientific practice of inventing simple hypotheses and then testing them has become obsolete, and will be superseded by ever-more-sophisticated versions of data mining. I think he misses a very big point. (Gordon Watts says the same thing … as do many other people, now that I bother to look.)

Early in the 17th century, Johannes Kepler proposed his Three Laws of Planetary Motion: planets move in ellipses, they sweep out equal areas in equal times, and their periods are proportional to the three-halves power of the semi-major axis of the ellipse. This was a major advance in the astronomical state of the art, uncovering a set of simple relations in the voluminous data on planetary motions that had been collected by his mentor Tycho Brahe.

Later in that same century, Sir Isaac Newton proposed his theory of mechanics, including both his Laws of Motion and the Law of Universal Gravitation (the force due to gravity falls as the inverse square of the distance). Within Newton’s system, one could derive Kepler’s laws – rather than simply positing them – and much more besides. This was generally considered to be a significant step forward. Not only did we have rules of much wider-ranging applicability than Kepler’s original relations, but we could sensibly claim to understand what was going on. Understanding is a good thing, and in some sense is the primary goal of science.

Chris Anderson seems to want to undo that. He starts with a truly important and exciting development – giant new petascale datasets that resist ordinary modes of analysis, but which we can use to uncover heretofore unexpected patterns lurking within torrents of information – and draws a dramatically unsupported conclusion – that the age of theory is over. He imagines a world in which scientists sift through giant piles of numbers, looking for cool things, and don’t bother trying to understand what it all means in terms of simple underlying principles.

There is now a better way. Petabytes allow us to say: “Correlation is enough.” We can stop looking for models. We can analyze the data without hypotheses about what it might show.

Well, we can do that. But, as Richard Nixon liked to say, it would be wrong. Sometimes it will be hard, or impossible, to discover simple models explaining huge collections of messy data taken from noisy, nonlinear phenomena. But it doesn’t mean we shouldn’t try. Hypotheses aren’t simply useful tools in some potentially outmoded vision of science; they are the whole point. Theory is understanding, and understanding our world is what science is all about.

What Good is a Theory? Read More »

29 Comments

Is the LHC Too Busy To Blog?

It’s fascinating to read the GLAST blog, written by Steve Ritz and featuring the exploits of everyone’s favorite new gamma-ray observatory. Not that it’s perfectly transparent — it’s full of breathless exclamations along the lines of “Very early this morning the LAT and GBM flight computers were powered on and booted successfully. Later this morning, the process of turning on the LAT detectors will begin!” But you kind of get the idea, even if the acronym-heavy NASA-ese is not a model of accessibility. And so far, things are looking just great — in fact, the LAT (my guess is “Large Aperture Telescope,” and I’m too proud to look it up) just took it’s first science data! Which is indeed an event worthy of exclamation points.

Steve is a friend of mine, and a good choice for a blogger, but I have to admit that I prefer the blogs that are by the experiments themselves, rather than the people working on them. This is a path blazed by NASA’s Opportunity Mars Rover, which had a (now sadly defunct) LiveJournal that made the Red Planet come to life: “The article also talked about my little, ahem, driving accident and implied that I am getting old and creaky — OMG so embarrassing!!! What if he read them!!”

What about the new Phoenix Lander? There was one of those boring human-based blogs for the landing, but the craft itself doesn’t seem to have it’s own blog. That’s because Phoenix is totally ahead of the curve, and eschews the outdated blogging format in favor of a Twitter account! And, of course, a Facebook profile. Good call, Phoenix — very cutting-edge.

So I want the Large Hadron Collider to have a blog. Humans are fine in their own way, of course, but I’d rather hear from the machine itself, or at least one of the experiments — an ATLAS or CMS blog would be fine. There is a Hardware Commissioning webpage, which makes the GLAST blog read like Dr. Seuss. (They’re cooling the thing down, and it seems to be going well.) There is also LHC Countdown, which seems less connected to facts on the ground.

Anyway, we are entering the home stretch, and the LHC should actually be injecting protons in July or maybe August. The beam won’t be at full strength yet, and there is going to be a lot of work to shake down the detectors and get everything in working order. After that, it’s up to Nature, who will decide whether to give us some interesting physics discoveries early, or really make us work for them.

In the meantime, a blog would help keep us up to speed. Now that we know that the LHC won’t destroy the world, it could use a media-friendly makeover. That’s all I’m saying.

Is the LHC Too Busy To Blog? Read More »

16 Comments

If It’s Not Disturbing, You’re Not Doing It Right

Science, that is. No, this is not what I have in mind. Rather, this provocative statement — the discoveries of science should be disturbing, they shouldn’t simply provide gentle reassurance about our place in the universe — is the conclusion reached by my latest Bloggingheads dialogue, with David Albert.

.

David is a philosopher of science at Columbia, author of Time and Chance as well as Quantum Mechanics and Experience. We talked about what philosophers of science do, the awful What the Bleep Do We Know? movie, string theory and falsifiability, and touched on time before running out thereof. Future episodes are clearly called for.

If It’s Not Disturbing, You’re Not Doing It Right Read More »

19 Comments

GLAST Just Launched!

The Gamma-ray Large Area Space Telescope, a satellite observatory designed to — guess what? — measure gamma rays, just launched on a Delta II rocket from Cape Canaveral. There were a few last-minute radar issues, but things seem to have ultimately gone off without a hitch. There is a launch blog here (naturally), and Phil Plait has been covering the mission in detail; there was a nice article in symmetry, and they also have a live blog.

“Vehicle performance continues to look nominal…” You have to love scientists.

GLAST will be doing a variety of cool things, but there is one goal that stands out as uniquely exciting for physicists: it will be searching for dark-matter annihilations. If the dark matter consists of weakly interacting massive particles, they can come together and annihilate into a cascade of lighter particles. (Image from Sky & Telescope.) Among the particles produced are very high-energy photons: gamma-rays. Those are what GLAST will be looking for, a process known as “indirect dark-matter detection,” in contrast to direct detection where a dark-matter particle bumps into an experiment here on Earth.

Of course, dark matter doesn’t annihilate very often, or it all would have gone away by now. The interactions are very infrequent, so you’re most likely to see the gamma-ray signature in areas of high dark-matter density, such as the center of our galaxy or in clusters of galaxies. (The number of annihilations goes as the density squared, so you get a lot more in crowded regions.) We can imagine a future in which dark matter is no longer considered “dark,” so long as you look in the right part of the spectrum, and we use combinations of techniques to map out the dark matter distribution throughout the universe. Cosmologically speaking, the 21st century is going to be the Dark Ages, but in a good way.

It’s not all that easy, of course — sadly, there are other sources of gamma-rays in the universe other than dark-matter annihilations. It’s going to be a task to know for sure whether some individual source of gamma-rays is produced by DM annihilation or some more prosaic mechanism, such as an active galactic nucleus. Apparently, there are people (“astronomers”) who like to study those sources for their own sake, so it’s not a total loss. One way or the other, GLAST is going to be looking at the universe in an exciting new way.

GLAST Just Launched! Read More »

19 Comments

The Lopsided Universe

Here’s a new paper of mine, with Adrienne Erickcek and Mark Kamionkowski:

A Hemispherical Power Asymmetry from Inflation

Abstract: Measurements of temperature fluctuations by the Wilkinson Microwave Anisotropy Probe (WMAP) indicate that the fluctuation amplitude in one half of the sky differs from the amplitude in the other half. We show that such an asymmetry cannot be generated during single-field slow-roll inflation without violating constraints to the homogeneity of the Universe. In contrast, a multi-field inflationary theory, the curvaton model, can produce this power asymmetry without violating the homogeneity constraint. The mechanism requires the introduction of a large-amplitude superhorizon perturbation to the curvaton field, possibly a pre-inflationary remnant or a superhorizon curvaton-web structure. The model makes several predictions, including non-Gaussianity and modifications to the inflationary consistency relation, that will be tested with forthcoming CMB experiments.

The goal here is to try to explain a curious feature in the cosmic microwave background that has been noted by Hans Kristian Eriksen and collaborators: it’s lopsided. We all (all my friends, anyway) have seen the pretty pictures from the WMAP satellite, showing the 1-part-in-100,000 fluctuations in the temperature of the CMB from place to place in the sky. These fluctuations are understandably a focus of a great deal of contemporary cosmological research, as (1) they arise from density perturbations that grow under the influence of gravity into galaxies and large-scale structure in the universe today, and (2) they appear to be primordial, and may have arisen from a period of inflation in the very early universe. Remarkably, from just a tiny set of parameters we can explain just about everything we observe in the universe on large scales.

The lopsidedness I’m referring to is different from the so-called axis of evil. The latter (in a cosmological context) refers to an apparent alignment of the temperature fluctuations on very large scales, which purportedly pick out a preferred plane in the sky (suspiciously close to the plane of the ecliptic). The lopsidedness is a different effect, in which the overall amplitude of fluctuations is a bit different (just 10% or so) in one direction on the sky than in the other. (A “hemispherical power asymmetry,” if you like.)

What we’re talking about is illustrated in these two simulations kindly provided by Hans Kristian Eriksen.

Untilted CMB

Tilted CMB

I know, they look almost the same. But if you peer closely, you will see that the bottom one is the lopsided one — the overall contrast (representing temperature fluctuations) is a bit higher on the left than on the right, while in the untilted image at the top they are (statistically) equal. (The lower image exaggerates the claimed effect in the real universe by a factor of two, just to make it easier to see by eye.)

What could cause such a thing? Our idea was that there was a “supermode” — a fluctuation that varied uniformly across the observable universe, for example if we were sampling a tiny piece of a sinusoidal fluctuation with a wavelength many times the size of our current Hubble radius.

The blue circle is our observable universe, the green curve is the supermode, and the small red squiggles are the local fluctuations that have evolved under the influence of this mode. The point is that the universe is overall just a little bit more dense on one side than the other, so it evolves just slightly differently, and the resulting CMB looks lopsided.

Interestingly, it doesn’t quite work; at least, not in a simple model of inflation driven by a single scalar field. In that case, you can get the power asymmetry, but there is also a substantial temperature anisotropy — the universe is hotter on one side than on the other. There are a few back-and-forth steps in the reasoning that I won’t rehearse here, but at the end of the day you get too much power on very large scales. It’s no fun being a theoretical cosmologist these days, all the data keeps ruling out your good ideas.

But we didn’t give up! It turns out that you can make things work if you have two scalar fields — one that does the inflating, cleverly called the “inflaton,” and the other which is responsible for the density perturbations, which should obviously be called the “perturbon” but for historical reasons is actually called the “curvaton.” By decoupling the source of most of the density in the universe from the source of its perturbations, we have enough wiggle room to make a model that fits the data. But there’s not that much wiggle room, to be honest; we have an allowed region in parameter space that is not too big. That’s good news, as it brings the hope that we can make relatively precise predictions that could be tested by some means other than the CMB.

One interesting feature of this model is that the purported supermode must have originated before the period of inflation that gave rise to the smaller-scale perturbations that we see directly in the CMB. Either it came from earlier inflation, or something entirely pre-inflationary.

So, to make a bit of a segue here, this Wednesday I gave a plenary talk at the summer meeting of the American Astronomical Society in St. Louis. I most discussed the origin of the universe and the arrow of time — I wanted to impress upon people that the origin of the entropy gradient in our everyday environment could be traced back to the Big Bang, and that conventional ideas about inflation did not provide straightforward answers to the problem, and that the Big Bang may not have been the beginning of the universe. I was more interested in stressing that this was a problem we should all be thinking about than pushing any of my favorite answers, but I did mention my paper with Jennie Chen as an example of the kind of thing we should all be looking for.

To an audience of astronomers, talk of baby universes tends to make people nervous, so I wanted to emphasize that (1) it was all very speculative, and (2) even though we don’t currently know how to connect ideas about the multiverse to observable phenomena, there’s no reason to think that it’s impossible in principle, and the whole enterprise really is respectable science. (If only they had all seen my bloggingheads dialogue with John Horgan, I wouldn’t have had to bother.) So I mentioned two different ideas that are currently on the market for ways in which influences of a larger multiverse might show up within our own. One is the idea of colliding bubbles, pursued by Aguirre, Johnson, and Shomer and by Chang, Kleban, and Levi. And the other, of course, was the lopsided-universe idea, since our paper had just appeared the day before. Neither of these possibilities, I was careful to say, applies directly to the arrow-of-time scenario I had just discussed; the point was just that all of these ideas are quite young and ill-formed, and we will have to do quite a bit more work before we can say for sure whether the multiverse is of any help in explaining the arrow of time, and whether we live in the kind of multiverse that might leave observable signatures in our local region. That’s research for you; we don’t know the answers ahead of time.

One of the people in the audience was Chris Lintott, who wrote up a description for the BBC. Admittedly, this is difficult stuff to get all straight the very first time, but I think his article gives the impression that there is a much more direct connection between my arrow-of-time work and our recent paper on the lopsided universe. In particular, there is no necessary connection between the existence of a supermode and the idea that our universe “bubbled off” from a pre-existing spacetime. (There might be a connection, but it is not a necessary one.) If you look through the paper, there’s nothing in there about entropy or the multiverse or any of that; we’re really motivated by trying to explain an interesting feature of the CMB data. Nevertheless, our proposed solution does hint at things that happened before the period of inflation that set up the conditions within our observable patch. These two pieces of research are not of a piece, but they both play a part in a larger story — attempting to understand the low entropy of the early universe suggests the need for something that came before, and it’s good to be reminded that we don’t yet know whether stuff that came before might have left some observable imprint on what we see around us today. Larger stories are what we’re all about.

The Lopsided Universe Read More »

40 Comments

Guest Post: Tom Levenson on Isaac Newton as the First Cosmologist

A little treat for loyal CV readers: Tom Levenson is a professor of science writing at MIT, and the proprietor of the Inverse Square Blog, one of the most erudite scientifically-minded outposts in this blogosphere of ours. I’ve been enjoying how Tom writes engagingly about science while mixing in cultural and artistic references, so I asked if he would like to guest-blog a bit here at CV. This is the first of three posts he’ll be contributing; look for the other two later this week. [Here is two, and here is three.]

———————————————————————–

Monday Isaac Newton blogging: A little light reading, Principia edition.

Update: See correction below.**

To introduce myself to the Cosmic Variance community (at Sean’s very kind invitation), let me just admit up front that I am a glutton for punishment.

Exhibit A: last year I read the Principia for pleasure.*

That’s not exactly right– it is more accurate to say that in the context of writing a book on Isaac Newton’s role as currency cop and death penalty prosecutor, I found myself reading the Principia as literature rather than the series of proofs it appears to be. Just like John Locke, who had to ask Christiaan Huygens if he could take the mathematical demonstrations on faith (Huygens said he could), I read to see what larger argument Newton was making about the ways human beings could now make sense of material experience. (This is, by the way, the only connection I can imagine that Locke and I share.)

What I got out of the exercise, more than anything else, was a reminder of how something we now mostly take for granted is in fact truly extraordinary: taken all in all, it seems genuinely remarkable that cosmology exists at all as a quantitative, empirical science.

That is: it is not obvious – or at least it wasn’t, all that long ago, that it would ever be possible to treat the universe as a whole as an object of study – especially given our very constrained vantage point from within that which we want to examine.

Most accounts of the story of modern cosmology more or less unconsciously downplay the strangeness of the claim that we can in fact make sense of the universe as a whole. They begin – mine did — with Einstein and the 1917 paper “Cosmological Considerations in the General Theory of Relativity, (to be found in English translation here.) Cosmology in this telling becomes more or less an inevitable extension of a recent advance in theoretical physics; the change in worldview precedes this extension of the apparatus of general relativity into a new calculation.

I recant: though I certainly wrote my version of this basic tale, reading Newton has reminded me of the much more radical change in the understanding of what it is possible to think about that had to precede all that cosmology (among much else) has achieved.

It certainly was not clear that the universe as a whole was subject to natural philosophical scrutiny in 1684, the year of Edmond Halley’s fortunate visit to Trinity College, Cambridge, and his more-or-less innocent question about the curve traced by a planet, assuming “the force of attraction towards the sun to be reciprocal to the square of their distance from it? that would produce an elliptical planetary orbit with the sun at one focus.

An ellipse inverse square relationship, Newton told Halley.

How did he know?

Why – he had calculated it.

By 1686, Newton had extended and revised his off-the-cuff answer into the first two books of Principia, both titled “The Motion of Bodies.” These pursued the implications of his three laws of motion through every circumstance Newton could imagine, culminating in his final demolition of Cartesian vortex physics.

But even though he had worked through a significant amount of mathematical reasoning developing the consequences of his inverse square law of gravitation, he left the ultimate demonstration of the power of these ideas for book three.

Books one and two had been “strictly mathematical,” Newton wrote. If there were any meat and meaning to his ideas, though, he must “exhibit the system of the world from these same principles.”

To make his ambitions absolutely clear Newton used the same phrase for the title of book three. There his readers would discover “The System of the World.”

This is where the literary structure of the work really comes into play, in my view. Through book three, Newton takes his audience through a carefully constructed tour of all the places within the grasp of his new physics. It begins with an analysis of the moons of Jupiter, demonstrating that inverse square relationships govern those motions. He went on, to show how the interaction between Jupiter and Saturn would pull each out of a perfect elliptical orbit; the real world, he says here, is messier than a geometer’s dream.

He worked on problems of the moon’s motion, of the issues raised by the fact that the earth is not a perfect sphere, and then, in what could have been a reasonable resting point for the book as a whole, he brought his laws of motion and gravity literally down to earth, with his famous analysis of the way the moon and the sun influence the tides.

Why not stop there? The story thus far had taken gravity from the limits of the observed solar system to the ground beneath each reader’s feet. More pragmatically – it told a story whose significance Newton’s audience would have grasped immediately: the importance of understanding the rules governing tides was obvious enough to the naval powers of the day.

No matter. Newton kept on going. The last section of his world-system turned to the celestial and seemingly impractical: the motion of comets, in an analysis of the track of the great comet of 1680.

Newton presented his findings through two different approaches: one produced by collecting all the data points he could of traveler’s observations and plotting the comet’s track against those points; and the other in which he selected just three points and calculated the path implied.

The two analyses matched almost exactly, and both showed that this comet did not complete a neat, elliptical orbit. Rather, it traced a parabola.

Newton knew what he had done. He was no accidental writer. A parabola, of course, is a curve that keeps on going – and that meant that at the end of a very long and very dense book, he lifted off again from the hard ground of daily reality and said, in effect, look: All this math and all these physical ideas govern everything we can see, out to and past the point where we can’t see anymore.

Most important, he did so with implacable rigor, a demonstration that, he argued, should leave no room for dissent. He wrote “The theory that corresponds exactly to so nonuniform a motion through the greatest part of the heavens, and that observes the same laws as the theory of the planets and that agrees exactly with exact astronomical observations cannot fail to be true.” (Italics added).

And now, finally, to get back to the point: this, I would argue, was the essential first and in some ways the most difficult step in the foundations of cosmology. With it Newton transformed the scale of the universe we inhabit, making it huge, perhaps infinite. Even more important, he demonstrated that a theory that could not fail to be true made it possible to examine one phenomenon — matter in motion under the influence of gravity — throughout all space.

That thought thrilled Newton’s contemporaries – Halley caught the mood in his dedicatory poem to the Principia, writing that “Error and doubt no longer encumber us with mist;/….We are now admitted to the banquets of the Gods;/We may deal with laws of heaven above; and we now have/The secret keys to unlock the obscure earth….” To catch a distant echo of that euphoria, just imagine what it would have been like to contemplate that ever receding comet, fifteen years into its journey towards who knew where at the time of Newton’s writing, and know that its behavior was knowable through an extraordinary act of human invention.

It’s a whole ‘nother story to ask what it would take to create a similar sense of pride and pleasure in a general audience today. But just to get the discussion going, I’d suggest that one of the oddities of contemporary cosmology as presented to the public is the degree to which the universe at large has become more homey; the very success in making the argument that there is a continuous scientific narrative to be told from the Big Bang to the present makes it harder to see just how grand a claim that is.

So, to end with an open invitation to this community: what would make current physical ideas as powerful and as intelligibly strange as Newton was able to make his story of a comet traveling from and to distances with out limit?

Last housekeeping notes: in one of the more premature bits of self-promotion in publishing history, the Newton material discussed above derives from my book, tentatively titled Newton and the Counterfeiter, coming early next year from Houghton Mifflin Harcourt (and Faber, for those of you across the pond).

Also – my thanks again to Sean Carroll for welcoming me here. If you want to see what I do when I’m at home, check out The Inverse Square Blog.

*If you are minded to pick up a copy of Principia, get this edition. Not only is it a well made book, easy to look at, well printed, with clear diagrams, it comes with the invaluable guide to reading the Principia written by I. Bernard Cohen. Accept no substitutes.

**Thanks to reader and award-winning physics teacher David Derbes for catching my inversion of the problem Halley put to Newton. Let this be a lesson to me: blog in haste; check one’s notes at leisure; repent in public.

Image: Woodcut by Jiri Daschitzsky, “The Great Comet of 1577.” Source: Wikimedia Commons.

Guest Post: Tom Levenson on Isaac Newton as the First Cosmologist Read More »

25 Comments
Scroll to Top