Science

John Preskill’s Intro to Quantum Information Lectures

I’ll take this opportunity to offer one of my occasional plugs for Caltech’s Quantum Frontiers blog. They publish posts by various members of the Institute for Quantum Information and Matter. Remarkably, the posts manage to exhibit considerable personality, rather than being perfunctory mentions of recent papers or talks. Much credit should go to Spiros Michalakis for getting the thing off the ground.

A lot of credit should also go to John Preskill, who is very well-known for his work in particle physics and quantum field theory as well as his second career as a quantum information. Who knew there was an entertaining blogger lurking inside the facade of a respectable scientist? (Third career?) John’s posts invariably manage to be enjoyable as well as informative. Now he’s put up a couple of hour-long videos, lectures that he gave at the 12th Canadian Summer School on Quantum Information. Two hours is a good length: enough time to actually convey useful information, without demanding the commitment of a full-semester course.

That’s the first video; click over for the second. And for an entertaining story about noisy hotel rooms and the exciting, thrill-a-minute life of the academic lecturer.

John Preskill’s Intro to Quantum Information Lectures Read More »

Moving Naturalism Forward: Videos and Recap

At long last we’re ready to release all the videos from the Moving Naturalism Forward workshop from October. We recorded every session, so we’re talking about ten videos of about an hour-and-a-half each. Not something anyone will watch in one sitting, but we’ve tried to indicate what the general topic of discussion was in each case. (If I find the time/energy, I will try to distill down some “greatest hits” moments into shorter videos — suggestions welcome from those who watch them.) And here they are:

Moving Naturalism Forward: Videos

Thanks to Keith Forman for doing such a great job with the recording and editing.

The format of the meeting was a relatively small group of people sitting around a table and discussing things. Each session had someone say something to kick things off, but in general the discussion was central, not formal presentations. Participants included Jerry Coyne, Richard Dawkins, Terrence Deacon, Simon DeDeo, Daniel Dennett, Owen Flangan, Rebecca Goldstein, Janna Levin, Massimo Pigliucci, David Poeppel, Nicholas Pritzker, Alex Rosenberg, Don Ross, Steven Weinberg, and me. A good cross-section of philosophers, physicists, biologists, and assorted other specialties. From start to finish the conversation was lively, informative, and at a very high level.

Here’s one session, picked out to give you a taste of the meeting. It’s the one where we started talking about morality and meaning. Rebecca Goldstein kicked things off, and Steven Weinberg gave a short talk.

Moving Naturalism Forward: Day 2, Morning, 1st Session

I’ve been promising a substantive report from the meeting myself, to join those by Jerry (one, two, three) and Massimo (one, two, three). Other obligations have made it very hard to find time for that, so let me instead just offer an overview of the issues we discussed. Take this as more a reflection of my personal views than a perfectly fair summary of the meeting itself; we have the videos for that.

Moving Naturalism Forward: Videos and Recap Read More »

24 Comments

More Milner Money

Yuri Milner, a technology entrepreneur who made a splash last July by giving $3 million prizes to nine theoretical physicists, has splashed again. He’s just announced two “special prizes,” both for another $3 million each: one to Stephen Hawking, and one split between a number of people who played important roles in this year’s Higgs discovery at the LHC. (None for me for writing a book about it, but I guess that’s to be expected.)

The original Fundamental Physics Prizes went to a very theoretical group of theorists: Ed Witten, Nima Arkani-Hamed, Alan Guth, Juan Maldacena, Alexei Kitaev, Ashoke Sen, Nathan Seiberg, Maxim Kontsevich, and Andrei Linde. Without question an extremely influential and deserving group. There were minor grumblings from some quarters that most of these folks hadn’t (yet) contributed ideas that have been verified by experiments, but my attitude is that if someone wants to give $27 million of their personal fortune to physics, I’m not going to quibble about the precise allocation.

Still, it’s great to see the LHC experimenters share in the recognition; I think most people would agree that theorists tend to gather a disproportionate part of the public acclaim. The $3 million for the LHC was split several ways: $1 million to Lyn Evans, who guided the construction of the accelerator; $1 million divided between Michel Della Negra, Tejinder Singh Virdee, Guido Tonelli, and Joe Incandela, all spokespersons for CMS over the years; and $1 million divided between Peter Jenni and Fabiola Gianotti, who have been spokespersons for ATLAS. Congratulations to all the winners!

More Milner Money Read More »

17 Comments

Skeptically Speaking

In a few hours I’ll be chatting live on Skeptically Speaking, a weekly podcast and radio show about science and critical thinking. The guest host will be Marie-Claire Shanahan, a science educator who blogs at Boundary Vision. Live broadcast is at 8pm Eastern/5pm Pacific, and before too long the recording will be available as a podcast.

There’s a Canadian theme running through the week, as I just got back from Toronto and Skeptically Speaking is based in Edmonton. Good timing; with global warming hurtling along, it’s the country of the future.

Skeptically Speaking Read More »

How to Explain the Higgs Mechanism

Greetings from chilly Toronto, where I’m briefly in town to participate in a public event about the Higgs boson tonight. Should be a good time, especially because it’s not just me giving a talk; I will spend 20 minutes explaining the theoretical motivation behind the Higgs, after which experimentalists Pierre Savard and William Trischuk will talk about the actual experiments.

Which raises the question: how does one explain the theoretical motivation behind the Higgs, given a small number of minutes and a motivated-but-nonexpert audience? It’s something I should have figured out by now, having written a book and all. But I’ve been fishing around, and I think I’ve finally settled on a favorite approach to doing it.

A couple of preliminary notes. I don’t think there is a good explanation of the Higgs boson at the sound bite level, say 15 seconds or less. That’s because you need to explain two distinct things: first, that there is a Higgs field filling space that interacts with the particles moving through it and giving some of them mass; and second, that the Higgs boson is the particle we observe when we interact with a vibration in that field. Both of these ideas are part of quantum field theory, which we generally don’t try to explain in physics popularizations, so it’s more than a few seconds of work to get them across. But I don’t think there is a shortcut: if you want to explain the Higgs at all, you have to explain the Higgs field.

With that in mind, the biggest stumbling block to providing a convincing popular-level motivation for the Higgs field is that we immediately leap to the idea that the role of the Higgs is to “give particles mass,” where by “particles” we really mean “quarks, charged leptons, and the W & Z bosons.” This raises a couple of problems. First, why do we need some mechanism to give particles mass? Why can’t they just have mass? Of course some particles can just have mass — like the Higgs itself. So you’re starting off by moving backwards, bringing up the need to explain why different symmetries apparently prevent particles from having mass, which is actually harder to explain than the Higgs mechanism. And second, most of the mass in real objects comes from QCD, not from the Higgs mechanism at all, so you are almost inevitably giving people the wrong idea. You see why it’s a tricky situation.

Fortunately, we have an alternative: the actual historical development of the subject. Back in the early 1960’s when the Higgs mechanism was being proposed (by Anderson, Englert, Brout, Higgs, Hagen, Guralnik, and Kibble), they weren’t trying to give mass to fermions. They were trying to explain how nuclear forces, which manifestly only stretch over a very short distance, could possibly be described in a way similar to gravity and electromagnetism (i.e. by Yang-Mills theories), which manifestly stretch over long distances. Sure, both gravity and E&M fade away as you move farther from a source, but they do so slowly (the inverse square law, in particular), which is why they are relatively easy to observe in the everyday world. If the nuclear forces are simply generalizations of E&M, as Yang and Mills suggested, why don’t they stretch over large distances? …

How to Explain the Higgs Mechanism Read More »

35 Comments

Thanksgiving

This year we give thanks for an idea that is central to our modern understanding of the forces of nature: gauge symmetry. (We’ve previously given thanks for the Standard Model Lagrangian, Hubble’s Law, the Spin-Statistics Theorem, conservation of momentum, effective field theory, and the error bar.)

When you write a popular book, some of the biggest decisions you are faced with involve choosing which interesting but difficult concepts to tackle, and which to simply put aside. In The Particle at the End of the Universe, I faced this question when it came to the concept of gauge symmetries, and in particular their relationship to the forces of nature. It’s a simple relationship to summarize: the standard four “forces of nature” all arise directly from gauge symmetries. And the Higgs field is interesting because it serves to hide some of those symmetries from us. So in the end, recognizing that it’s a subtle topic and the discussion might prove unsatisfying, I bit the bullet and tried my best to explain why this kind of symmetry leads directly to what we think of as a force. Part of that involved explaining what a “connection” is in this context, which I’m not sure anyone has ever tried before in a popular book. And likely nobody ever will try again! (Corrections welcome in comments.)

Physicists and mathematicians define a “symmetry” as “a transformation we can do to a system that leaves its essential features unchanged.” A circle has a lot of symmetry, as we can rotate it around the middle by any angle, and after the rotation it remains the same circle. We can also reflect it around an axis down the middle. A square, by contrast, has some symmetry, but less — we can reflect it around the middle, or rotate by some number of 90-degree angles, but if we rotated it by an angle that wasn’t a multiple of 90 degrees we wouldn’t get the same square back. A random scribble doesn’t have any symmetry at all; anything we do to it will change its appearance.

That’s not too hard to swallow. One layer of abstraction is to leap from symmetries of a tangible physical object like a circle to something a bit more conceptual, like “the laws of physics.” But it’s a leap well worth making! …

Thanksgiving Read More »

33 Comments

Time-Reversal Violation Is Not the "Arrow of Time"

Looks like the good folks at the BaBar experiment at SLAC, feeling that my attention has been distracted by the Higgs boson, decided that they might be able to slip a pet peeve of mine past an unsuspecting public without drawing my ire. Not so fast, good folks at BaBar!

They are good folks, actually, and they’ve carried out an extremely impressive bit of experimental virtuosity: obtaining a direct measurement of the asymmetry between a particle-physics process and its time-reverse, thereby establishing very direct evidence that the time-reversal operation “T” is not a good symmetry of nature. Here’s the technical paper, the SLAC press release, and a semi-popular explanation by the APS. (I could link you to the Physical Review Letters journal server rather than the arxiv, but the former is behind a paywall while the latter is free, and they’re the same content, so why would I do that? [Update: the PRL version is available free here, but not from the PRL page directly.])

The reason why it’s an impressive experiment is that it’s very difficult to directly compare the rate of one process to its precise time-reverse. You can measure the lifetime of a muon, for example, as it decays into an electron, a neutrino, and an anti-neutrino. But it’s very difficult (utterly impractical, actually) to shoot a neutrino and an anti-neutrino directly at an electron and measure the probability that it all turns into a muon. So what you want to look at are oscillations: one particle turning into another, which can also convert back. That usually doesn’t happen — electrons can’t convert into positrons because charge is conserved, and they can’t convert into negatively-charged pions because energy and lepton number are conserved, etc. But you can get the trick to work with certain quark-antiquark pairs, like neutral kaons or neutral B mesons, where the particle and its antiparticle can oscillate back and forth into each other. If you can somehow distinguish between the particle and antiparticle, for example if they decay into different things, you can in principle measure the oscillation rates in each direction. If the rates are different, we say that we have measured a violation of T reversal symmetry, or T-violation for short.

As I discuss in From Eternity to Here, this kind of phenomenon has been measured before, for example by the CPLEAR experiment at CERN in 1998. They used kaons and anti-kaons, and watched them decay into different offspring particles. If the BaBar press release is to be believed there is some controversy over whether that was “really” was measuring T-violation. I didn’t know about that, but in any event it’s always good to do a completely independent measurement.

So BaBar looked at B mesons. I won’t go into the details (see the explainer here), but they were able to precisely time the oscillations between one kind of neutral B meson, and the exact reverse of that operation. (Okay, tiny detail: one kind was an eigenstate of CP, the other was an eigenstate of flavor. Happy now?)

They found that T is indeed violated. This is a great result, although it surprises absolutely nobody. There is a famous result called the CPT theorem, which says that whenever you have an ordinary quantum field theory (“ordinary” means “local and Lorentz-invariant”), the combined operations of time-reversal T, parity P, and particle/antiparticle switching C will always be a good symmetry of the theory. And we know that CP is violated in nature; that won the Nobel Prize for Cronin and Fitch in 1980. So T has to be violated, to cancel out the fact that CP is violated and make the combination CPT a good symmetry. Either that, or the universe does not run according to an ordinary quantum field theory, and that would be big news indeed.

All perfectly fine and glorious. The pet peeve only comes up in the sub-headline of the SLAC press release: “Time’s quantum arrow has a preferred direction, new analysis shows.” Colorful language rather than precise statement, to be sure, but colorful language that is extremely misleading. …

Time-Reversal Violation Is Not the "Arrow of Time" Read More »

40 Comments

Top Ten Amazing Higgs Boson Facts!

To celebrate the publication of The Particle at the End of the Universe, here’s a cheat sheet for you: mind-bending facts about the Higgs boson you can use to impress friends and prospective romantic entanglements.

1. It’s not the “God particle.” Sure, people call it the God particle, because that’s the name Leon Lederman attached to it in a book of the same name. Marketing genius, but wildly inaccurate. (Aren’t they all God’s little particles?) As Lederman and his co-author Dick Teresi explain in the first chapter of their book, “the publisher wouldn’t let us call it the Goddamn Particle, though that might be a more appropriate title, given its villainous nature and the expense it is causing.”

2. Nobel prizes are coming. But we don’t know to whom. The idea behind the Higgs boson arose in a number of papers in 1963 and 1964. One by Philip Anderson, one by Francois Englert and Robert Brout (now deceased), two by Peter Higgs, and one by Gerald Guralnik, Richard Hagen, and Tom Kibble. By tradition, the Nobel in Physics is given to three people or fewer in any one year, so there are hard choices to be made. (Read Chapter 11!) The experimental discovery is certainly Nobel-worthy as well, but that involves something like 7,000 people spread over two experimental collaborations, so it’s even more difficult. It’s possible someone associated with the actual construction of the Large Hadron Collider could win the prize. Or someone could convince the Nobel committee to ditch the antiquated three-person rule, and that person could be awarded the Peace Prize.

3. We’ve probably discovered the Higgs, but we’re not completely sure. We’ve discovered something — there’s a new particle, no doubt about that. But like any new discovery, it takes time (and in this case, more data) to be absolutely sure you understand what you’ve found. A major task over the next few years will be to pin down the properties of the new particle, and test whether it really is the Higgs that was predicted almost five decades ago. It’s better if it’s not, of course; that means there’s new and exciting physics to be learned. So far it looks like it is the Higgs boson, so it’s okay to talk as if that’s what we’ve discovered, at least until contrary evidence comes in.

4. The Large Hadron Collider is outrageously impressive. The LHC, the machine in Geneva, Switzerland, that discovered the Higgs, is the most complicated machine ever built. (Chapter 5.) It’s a ring of magnets and experimental detectors, buried 100 meters underground, 27 kilometers in circumference. It takes protons, 100 trillion at a time, and accelerates them to 99.999999% the speed of light, then smashes them together over 100 million times per second. The beam pipe through which the protons travel is evacuated so that its density is lower than you would experience standing on the Moon, and the surrounding superconducting magnets are cooled to a temperature lower than that of intergalactic space. The total kinetic energy of the protons moving around the ring is comparable to that of a speeding freight train. To pick one of countless astonishing numbers out of a hat, if you laid all the electrical cable in the LHC end-to-end it would stretch for about 275,000 kilometers, enough to wrap the Earth almost seven times.

5. The LHC was never going to destroy the world. Remember that bit of scaremongering? People were worried that the LHC would create a black hole that would swallow the Earth, and we would all die. (It was never quite explained why the physicists who built the machine would be willing to sacrifice their own lives so readily.) This was silly, mostly because there’s nothing going on inside the LHC that doesn’t happen out there in space all the time. There was a real setback on September 19, 2008, when a magnet kind of exploded, but nobody was hurt. The current casualty list from the LHC mostly consists of people’s favorite theories of new physics, which are continually being constrained as new data comes in.

6. The Higgs boson isn’t really all that important. The boson is just some particle. What’s important is something called the Higgs mechanism. What really gets people excited is the Higgs field, from which the particle arises. Modern physics — in particular, quantum field theory — tells us that all particles are just vibrations in one field or another. The photon is a vibration in the electromagnetic field, the electron is a vibration in the electron field, and so on. (That’s why all electrons have the same mass and charge — they’re just different vibrations in the same underlying field that fills the universe.) It’s the Higgs field, lurking out there in empty space, that makes the universe interesting. Finding the boson is exciting because it means the field is really there. This is why it’s hard to explain the importance of the Higgs in just a few words — you first have to explain field theory!

7. The Higgs mechanism makes the universe interesting. If it weren’t for the Higgs field (or something else that would do the same trick), the elementary particles of nature like electrons and quarks would all be massless. The laws of physics tell us that the size of an atom depends on the mass of the electrons that are attached to it — the lighter the electrons are, the bigger the atom would be. Massless electrons imply atoms as big as the universe — in other words, not atoms at all, really. So without the Higgs, there wouldn’t be atoms, there wouldn’t be chemistry, there wouldn’t be life as we know it. It’s a pretty big deal.

8. Your own mass doesn’t come from the Higgs. We were careful in the previous point to attribute the mass of “elementary” particles to the Higgs mechanism. But most of the mass in your body comes from protons and neutrons, which are not elementary particles at all. They are collections of quarks held together by gluons. Most of their mass comes from the interaction energies of those quarks and gluons, and would be essentially unchanged if the Higgs weren’t there at all. So without the Higgs, we could still have massive protons and neutrons, although their properties would be very different.

9. There will be no jet packs. People sometimes think that since the Higgs has something to do with “mass,” it’s somehow connected to gravity, and that by learning to control it we might be able to turn gravity on and off. Sadly not true. As above, most of your mass doesn’t come from the Higgs field at all. But even putting that aside, there’s no realistic prospect of “controlling the Higgs field.” Think of it this way: it costs energy to change the value of the Higgs field in any region of space, and energy implies mass (through Einstein’s famous E = mc2). If you were to take a region of space the size of a golf ball and turn the Higgs field off inside of it, you would end up with an amount of mass larger than that of the Earth, and create a black hole in the process. Not a feasible plan. We haven’t been looking for the Higgs because of the promise of future technological applications — it’s because we want to understand how the world works.

10. The easy part is over. The discovery of the Higgs completes the Standard Model; the laws of physics underlying everyday life are completely understood. That’s pretty impressive; it’s a project that we, as a species, have been working on for at least 2,500 years, since Democritus first suggested atoms back in ancient Greece. This leaves plenty of physics that we don’t yet understand, from dark matter to the origin of the universe, not to mention complicated problems like turbulence and neuroscience and politics. Indeed, we’re hoping that studying the Higgs might provide new clues about dark matter and other puzzles. But we do now understand the basic building blocks of the world we immediately see around us. It’s a triumph for human beings; the future history of physics will be divided into the pre-Higgs era and the post-Higgs era. Here’s to the new era!

Top Ten Amazing Higgs Boson Facts! Read More »

68 Comments

A Book Full of Particles

Publication day! In case it’s slipped your mind, today is the day when The Particle at the End of the Universe officially goes on sale. Books get a bit of a boost if they climb up the Amazon rankings on the first day, so if you are so inclined, today would be the day to click that button. Also: great holiday present for the whole family!

A very nice review by Michael Brooks appeared in New Scientist. (It’s always good to read a review when you can tell the author actually read the book.) Another good one by John Butterworth appeared in Nature, but behind a paywall.

Brief reminder of fun upcoming events:

  • Today (Tuesday the 13th), you can Ask Me Anything over at Reddit, starting at 2pm Eastern, 11am Pacific. Of course you lovely blog readers already know everything worth knowing, but I’m looking forward to dodging personal queries from people around the world. (And hopefully explaining a little physics.)
  • Thursday I’ll be doing an online chat in a platform called Shindig. That’s 6pm Eastern, 3pm Pacific. Fire up your webcam and you can be part of the virtual audience.

FAQ: Yes, you should have no trouble reading and understanding it, no matter what your physics background may be. Yes, there are electronic editions of various forms. Yes, there will also be an audio book, but it’s still being recorded. No, nobody has yet purchased the movie rights; call me. Yes, I know that the Higgs boson is not literally sitting there at the end of the universe. It’s a metaphor; for more explanation, read the book!

Writing this book has been quite an experience. Unlike From Eternity to Here, in this case I wasn’t writing about my own research interests. So for much of the time I was acting like a journalist, talking to the people who really built the Large Hadron Collider and do the experiments there. It’s no exaggeration that I went into the project with an enormous amount of respect for what they accomplished, and came out with enormously more than that. It’s a truly amazing achievement on the part of thousands of dedicated people who are largely anonymous to the outside world. (But for the rest of their lives they get to say “I helped discover the Higgs boson,” which is pretty cool.)

Of course, being who I am, I couldn’t help but take the opportunity to try to explain some physics that doesn’t often get explained. So once you hit the halfway point in the book or so, we start digging into what quantum field theory really is, why symmetry breaking is important, and the fascinating history of how the Higgs mechanism was developed. (I had to restrain myself from going even deeper, especially into issues of spin and chirality, but this is supposed to be a bodice-ripper, not a brain-flattener.) At the end of the book, as a reward, you get to contemplate the role of the internet and bloggers in the changing landscape of scientific communication, as well as all the fun technological breakthroughs that we will get as a result of the Higgs discovery. (I.e., none whatsoever.)

Sean Carroll: The Particle at the End of the Universe

Hope you like reading it as much as I liked writing it.

A Book Full of Particles Read More »

15 Comments

South Pole Telescope and CMB Constraints

The South Pole Telescope is a wonderful instrument, a ten-meter radio telescope that has been operating at the South Pole since 2007. Its primary target is the cosmic microwave background (CMB), but a lot of the science comes from observations of the Sunyaev-Zeldovich effect due clusters of galaxies — a distortion of the frequency of CMB photons as they travel through the hot gas of the cluster. We learn a lot about galaxy clusters this way, and as a bonus we have a great way of looking for small-scale structure in the CMB itself.

Now the collaboration has released new results on using SPT observations to constrain cosmological parameters.

A Measurement of the Cosmic Microwave Background Damping Tail from the 2500-square-degree SPT-SZ survey
K. T. Story, C. L. Reichardt, Z. Hou, R. Keisler, et al.

We present a measurement of the cosmic microwave background (CMB) temperature power spectrum using data from the recently completed South Pole Telescope Sunyaev-Zel’dovich (SPT-SZ) survey. This measurement is made from observations of 2540 deg^2 of sky with arcminute resolution at 150 GHz, and improves upon previous measurements using the SPT by tripling the sky area. We report CMB temperature anisotropy power over the multipole range 650<ell<3000. We fit the SPT bandpowers, combined with the results from the seven-year Wilkinson Microwave Anisotropy Probe (WMAP7) data release, with a six-parameter LCDM cosmological model and find that the two datasets are consistent and well fit by the model. Adding SPT measurements significantly improves LCDM parameter constraints, and in particular tightens the constraint on the angular sound horizon theta_s by a factor of 2.7…[abridged]

Here is the first plot anyone should look for in a paper like this: …

South Pole Telescope and CMB Constraints Read More »

20 Comments
Scroll to Top