Philosophy and Cosmology: Slow Live-Blogging
Greetings from Oxford, a charming little town across the Atlantic with its very own university. It’s in the United Kingdom, a small island nation recognized for its steak and kidney pie and other contributions to world cuisine. What you may not know is that the UK has also produced quite a few influential philosophers and cosmologists, making it an ideal venue for a small conference that aims to bring these two groups together.
The proximate reason for this particular conference is George Ellis’s 70th birthday party. Ellis is of course a well-known general relativist, cosmologist, and author. Although the idea of a birthday conference for respected scientists is quite an established one, Ellis had the idea of a focused and interdisciplinary meeting that might actually be useful, rather than just bringing together all of his friends and collaborators for a big party. It’s to his credit that they invited as many multiverse-boosters as multiverse-skeptics. (I would go for the party, myself.)
George is currently very interested and concerned by the popularity of the multiverse idea in modern cosmology. He’s worried, as many others are (not me, especially), that the idea of a multiverse is intrinsically untestable, and represents a break with the standard idea of what constitutes “science.” So he and the organizing committee have asked a collection of scientists and philosophers with very different perspectives on the idea to come together and hash things out.
It appears as if there is working wireless here in the conference room, so I’ll make some attempt to blog very briefly about what the different speakers are saying. If all goes well, I’ll be updating this post over the next three days. I won’t always agree with everyone, of course, but I’ll try to fairly represent what they are saying.
Saturday night:
Like any good British undertaking, we begin in the pub. I introduce some of the philosophers to Andrei Linde, who entertains us by giving an argument for solipsism based on the Wheeler-deWitt equation. The man can command a room, that’s all I’m saying.
(If you must know the argument: the ordinary Schrodinger equation tells us that the rate of change of the wave function is given by the energy. But for a closed universe in general relativity, the energy is exactly zero — so there is no time evolution, nothing happens. But you can divide the universe into “you” and “the rest.” Your own energy is not zero, so the energy of the rest of the universe is not zero, and therefore it obeys the standard Schrodinger equation with ordinary time evolution. So the only way to make the universe real is to consider yourself separate from it.)
Sunday morning: Cosmology
9:00: Ellis gives the opening remarks. Cosmology is in a fantastic data-rich era, but it is also coming up against the limits of measurement. In the quest for ever deeper explanation, increasingly speculative proposals are being made, which are sometimes untestable even in principle. The multiverse is the most obvious example.
Question: are these proposals science? Or do they attempt to change the definition of what “science” is? Does the search for explanatory power trump testability?
The questions aren’t only relevant to the multiverse. We need to understand the dividing line between science and non-science to properly classify standard cosmology, inflation, natural selection, Intelligent Design, astrology, parapsychology. Which are science?
9:30: Joe Silk gives an introduction to the state of cosmology today. Just to remind us of where we really are, he concentrates on the data-driven parts of the field: dark matter, primordial nucleosynthesis, background radiation, large-scale structure, dark energy, etc.
Silk’s expertise is in galaxy formation, so he naturally spends a good amount of time on that. Theory and numerical simulations are gradually making progress on this tough problem. One outstanding puzzle: why are spiral galaxies so thin? Probably improved simulations will crack this before too long.
10:30: Andrei Linde talks about inflation and the multiverse. The story is laden with irony: inflation was invented to help explain why the universe looks uniform, but taking it seriously leads you to eternal inflation, in which space on extremely large (unobservable) scales is highly non-uniform — the multiverse. The mechanism underlying eternal inflation is just the same quantum fluctuations that give rise to the density fluctuations observed in large-scale structure and the microwave background. The fluctuations we see are small, but at earlier times (and therefore on larger scales) they could easily have been very large — large enough to give rise to different “pocket universes” with different local laws of physics.
Linde represents the strong pro-multiverse view: “An enormously large number of possible types of compactification which exist e.g. in the theory of superstrings should be considered a virtue.” He said that in 1986, and continues to believe it. String theorists were only forced to take all these compactifications seriously by the intervention of a surprising experimental result: the acceleration of the universe, which implied that there was no magic formula that set the vacuum energy exactly to zero. Combining the string theory landscape with eternal inflation gives life to the multiverse, which among other things offers an anthropic solution to the cosmological constant problem.
Still, there are issues, especially the measure problem: how do you compare different quantities when they’re all infinitely big? (E.g. number of different kinds of observers in the multiverse.) Linde doesn’t think any of the currently proposed measures are completely satisfactory, including the ones he’s invented. A big problem with Boltzmann brains.
Another problem is what we mean by “us,” when we’re trying to predict “what observers like us are likely to see.” Are we talking about carbon-based life, or information-processing computers? Help, philosophers!
Linde thinks that the multiverse shows tendencies, although not cut-or-dried predictions. It prefers a cosmological constant to quintessence, and increases the probability that axions rather than WIMPs are the dark matter. Findings to the contrary would be blows to the multiverse idea. Most strongly, without extreme fine-tuning, the multiverse would not be able to simultaneously explain large tensor modes in the CMB and low-energy supersymmetry.
…
Philosophy and Cosmology: Slow Live-Blogging Read More »