Miscellany

Improving Euclid’s Fifth Postulate

Michael Chabon (author of The Amazing Adventures of Kavalier and Clay), writing in the New York Review of Books, discusses The New Annotated Sherlock Holmes. He quotes Holmes in The Sign of Four:

Holmes remarks to Watson, referring to A Study in Scarlet, and continues:

Honestly, I cannot congratulate you upon it. Detection is, or ought to be, an exact science, and should be treated in the same cold and unemotional manner. You have attempted to tinge it with romanticism, which produces much the same effect as if you worked a love-story or an elopement into the fifth proposition of Euclid.

Some of us feel, of course, that the fifth proposition of Euclid would only be improved by a nice juicy elopement.

What? I hope not too many people believe that. Juicy elopements are all well and good, but they would not improve Euclid’s Fifth Postulate:

If a straight line crossing two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if extended indefinitely, meet on that side on which are the angles less than the two right angles.

The postulate is already cumbersome enough! Mixing elopements into the act would only degrade an already-confusing situation. What would you want, the two indefinitely-extended straight lines to exchange secret vows of eternal love on the side on which the angles are less than right angles? Madness.

Of course, the Fifth Postulate (or Parallel Postulate) is not necessarily “true”; by relaxing this assumption, we are led to non-Euclidean geometry, which ultimately provides the basis for the geometric understanding of spacetime achieved by Einstein in general relativity. Everyone knew that the parallel postulate was suspiciously ugly, but it took quite a while to gather up the courage to simply discard it and see what happens.

Likewise, of course, I doubt that many elopements would be improved by Euclid’s Fifth Postulate. Like it or not, the beauty of mathematics springs from its rigorous austerity; it’s a different kind of beauty than we might find in a clandestine marriage, but no less compelling for that.

Improving Euclid’s Fifth Postulate Read More »

The highest energy physics

Greetings from Aspen, where tonight I’ll be giving a public talk on Dark Matter and Dark Energy: From the Universe to the Laboratory. It’s at 8:00 pm, any blog readers in the neighborhood are encouraged to drop by. The talk is part of the Aspen Winter Conference on The Highest Energy Physics, which is in turn part of a sequence of annual conferences held at the Aspen Center for Physics. Physicists know how to live, I tell you.

Right now the highest-energy physics we have here on earth is being conducted at Fermilab, a short drive from Chicago. The Tevatron accelerator is crashing protons into antiprotons to see what comes out. The hope is that we see something good like the Higgs boson, or supersymmetry, or large extra dimensions of space. If not, the Large Hadron Collider at CERN in Switzerland is scheduled to turn on in 2007, and will be operating at notably higher energies. There’s almost a guarantee that the LHC will see something interesting, although of course you never know what until you look.

In the meantime, you are welcome to go look at the actual events at the Tevatron in real time! The two main experiments, CDF and D0, both have displays where you can see live events. I wish there was a little more explanation about what the displays actually mean; right now it’s more gee-whiz than really being informative. But still, pretty gee-whiz; this is a schematic of the cylindrical volume of the CDF detector, with all those curly lines representing particles produced by a collision.


Of course, there are much higher-energy particles that are not made on Earth, namely ultra-high-energy cosmic rays. These are being observed by the new Pierre Auger observatory, which has a facility in Argentina and hopes to build another in the U.S. The analogy I will use tonight is that particle astrophysics and collider physics are like eavesdropping and interrogation. When you eavesdrop on someone, they might reveal things that they would never tell you outright; similarly, the ultra-high-energy cosmic rays could teach us something about particle physics that we couldn’t get to by accelerating particles ourselves. But the problem with eavesdropping is that you can’t just ask the questions you want to; besides, most of the time the conversations you overhear are just boring. If you are interrogating someone, perhaps they will clam up about some interesting questions, but at least you can be precise about what you are asking. And who knows, they might just tell you the answer.

The highest energy physics Read More »

Trendy

TigerHawk points to another one of those 0nly-on-the-internet cool things: the NameVoyager, which allows you to find out the relative popularity of different names given to children since the year 1900. Even better, it plots the frequencies of all names that begin with the letters you’ve entered, so that you can see which first letters are most popular. The amount of fluctuation in names is really quite impressive. One interesting thing his how we’ve recently become infatuated with exotic-sounding names, as evidenced by the zoom in popularity of names beginning with letters like “Q”, “X”, and “Z”:

Of course, the Z demographic is dominated by Zachary, which points to another trend towards solid Old Testament names: Joshua, Isaiah, and Hannah have all seen surges in popularity. No sign of Jezebel or Baal, though.

Trendy Read More »

The road ahead

Daniel Wallechinsky, writing for Parade magazine (that high-powered foreign policy journal), has consulted with Human Rights Watch, Freedom House, Amnesty International and Reporters Without Borders to construct a list of the World’s Ten Worst Dictators. Since we are now told, somewhat belatedly, that our invasion of Iraq was actually a humanitarian venture designed to spread democracy throughout the world (and the bits about weapons of mass destruction and ties to al-Qaeda were just honest mistakes), this list will serve as a helpful finding-chart for our future foreign policy objectives. I figure we’ll be invading each in turn, from the worst at the top down to the not-quite-so-evil at the bottom. By the time we get through them all, the ineluctable logic of the Bush Doctrine will no doubt convince all remaining dictators to abdicate in a hurry.

  1. Omar al-Bashir, Sudan.
  2. Kim Jong Il, North Korea.
  3. Than Shwe, Burma.
  4. Hu Jintao, China.
  5. Crown Prince Abdullah, Saudi Arabia.
  6. Muammar al-Qaddafi, Libya.
  7. Pervez Musharraf, Pakistan.
  8. Saparmurat Niyazov, Turkmenistan.
  9. Robert Mugabe, Zimbabwe.
  10. Teodoro Obiang Nguema, Equatorial Guinea.

We can quibble about the list, but the top three are consensus picks to be sure. al-Bashir and Shwe will likely fold like a cheap suit after the first hundred cruise missiles, so they shouldn’t be any problem. Kim Jong Il is trickier, with those nuclear weapons and all. Fortunately he doesn’t yet have the capability to launch them all the way to California, so South Korea and Japan will likely take the brunt of the carnage. (Maybe they can borrow our missile defense system?) China will be tougher yet, what with a substantial military and over a billion people. Might have to call up more of the Guard. But we know about their nefarious plans to put an Asian person on the Moon, and we have to act swiftly before the Chinese flag is flapping in the Lunar breeze overhead.

Saudi Arabia will be awkward, since they’re our close allies and all, but frankly we could use the oil, and our armed forces are already in the area. (The fact that al-Qaeda actually has support there is just a bonus.) I’m surprised to see Qaddafi so high on the list; I thought he had lost the will to be a really brutal dictator, but apparently he’s rebounded in the last year, punishing entire towns for “collective guilt.” Pakistan — again, awkward, and heavily armed. But perhaps we could take out bin Laden in the process, which would be a PR coup. Personally I think Niyazov should be ranked even higher; he has quite a fondness for erecting statues of himself, which will make for great visuals after Turkmenistan is liberated. Mugabe and Nguema have slipped in the rankings over the last year, but that’s as much a reflection of the tough competition as it is their own faults. Fact is, both regimes condone the use of torture against their suspected enemies, and that’s a no-no in this new era of enforced Enlightenment values. Freedom is on the march!

The road ahead Read More »

Pushing back

Brad DeLong has a nice post about receiving a challenging undergraduate education. He was prompted by an article by Ross Douthat in the Atlantic Monthly, which apparently whines about how it is possible to skate through Harvard without working very hard or learning very much. DeLong points out that it was, and still is, also possible to receive an extraordinarily rewarding education at a place like Harvard — it’s in the hands of the student to go out and get it.

I would just point out that this lesson is completely universal, not specific to Harvard. At almost any university in the United States, it’s possible to graduate without being challenged very much, if that’s your major goal (perhaps places like MIT and CalTech are exceptions). And at the same time, any halfway-decent institution of higher learning can provide a fantastic education to a student who makes the effort to get it. In my experience, students consistently underestimate the extent to which the quality of their education depends much more on themselves than on the place they are studying. The same is even true, albeit to a lesser extent, in graduate school: students who go beyond their coursework, who go to seminars and try to catch on with what is being discussed, who knock on professors’ doors to talk about research, who speak up in meetings to politely ask questions — these students will learn a tremendous amount no matter where they are.

I was an undergraduate at Villanova, a middle-class Catholic school most notable for winning the NCAA men’s basketball championship my first year. While many of my classmates were biding time until the weekend, I was being constantly challenged and amazed by faculty in astronomy, physics, mathematics, biology, philosophy, English, sociology, religious studies, political science, history, and elsewhere. So, to Edward Guinan, Frank Maloney, Mike Burke, Jack Doody, Colleen Sheehan, Peter Knapp, Felix Beiduk, Tony Godzieba, Bill Werpehowski, Earl Bader, John Caputo, Bill Marks, Bill Fleishman, and many others who inspired me to be a better thinker and person — thanks.

Pushing back Read More »

Why we do what we do

In the comments to the post about Easterbrook’s nonsense, the question arises about the practical usefulness of fields like particle physics. This deserves a more careful response, but I think the basic idea is straightforward: There are parts of science that are worth doing just because we want to know the answer, not because they will lead to tangible results. And we shouldn’t be reluctant to admit it — the “we” who want to know the answer isn’t just professional scientists, it’s a healthy fraction of people in all professions.

(And by the way — does anyone other than me detect irony here? I mean, a complaint that society spends too much of its resources on the frivolous pursuit of high-energy physics is contained in a column about football?)

Matt McIrvin
points to a very nice post of his about neutrino astrophysics. But I agree with the spirit of the response by CapitalistImperialistPig, which I take to be that this really isn’t the point. Pure science is worth doing for its own reasons, not because of hypothetical future spin-offs (even though such spin-offs have been remarkably important).

But CIP’s comment contains one very bad idea: that we should require some sort of outreach from every professional scientist. The crucially important job of explaining ourselves to our fellow humans is a duty that inheres in the field as a whole, not in each individual. Outreach is a crucial part of the scientific enterprise, along with things like “theory” and “experiment” and “mentoring students” and “writing grant proposals.” But there’s no reason to require that every single scientist participate in experiments, for example (and thank goodness). What we need to do is to recognize the importance of outreach (not to mention education) for the continued health of science, and identify the best ways to get it done. Perhaps, as budgets are squeezed and money is diverted from real science to Bushian wild-goose chases, the scientific community will overcome its reluctance to give outreach the credit it is due.

Why we do what we do Read More »

Bad cosmology hurts America

Chad Orzel just wants to be a good citizen and read some post-Super-Bowl football commentary. But he can’t, because Gregg Easterbrook can’t resist the temptation to spice up his respectable (or at least unobjectionable) football writing with utterly senseless remarks about science.

Recently some astronomers proposed that the universe is shaped like a gigantic donut. Then a competing group proposed that the universe actually is shaped like a gigantic soccer ball. The cosmic-doughnut group, based at the University of Pennsylvania, took exception to the cosmic-soccer-ball gang, who are mainly French academics. Cosmic-donut supporters asserted if the whole universe is a soccer ball, then individual views of the sky should resemble a sliced bagel.

Both the donut and soccer-ball camps hold that when astronomers scan deep space, the infinity they think they see is an illusion. In some doughnut-shaped or soccer-inspired or bagel-sliced way, the cosmos appears much larger than it is. Cosmologists estimate there are at least 100 billion galaxies; actually, these researchers contend, what we observe is reflections of a much smaller number of galaxies: a traveler moving at super-speed straight out into the universe would eventually end up back at the starting point, not continue forever. The universe is an illusion? Well, this seems easier to swallow than the idea that all material for the entire cosmos popped out of a single point with no content, as Big Bang theory maintains.

And in a comment, Kip Dyer points to Easterbrook’s mindless attack on the entire enterprise of particle physics. Chad puts it best: “Just… stop. You’re hurting America. Take your cue from John Madden, and just disappear until August.”

Bad cosmology hurts America Read More »

Interestingness

I wanted to say something about the essay by Robert Laughlin (no relation to this McLaughlin fellow, nor for that matter this one) that was pointed to by 3 quarks daily. Laughlin, of course, is a towering figure in theoretical condensed-matter physics, winner of the 1998 Nobel Prize for his work on the fractional quantum Hall effect. He is also a well-known proponent of “emergence” as a crucial concept in modern physics. This notion of emergence is held up in contrast with reductionism — the latter attempts to understand things by breaking them down into their component parts, while the former focuses on collective behaviors that only become apparent at the macroscopic level.

This is an interesting distinction, but for some reason people feel compelled to raise it to the status of some sort of competition, arguing that either emergence or reductionism is somehow more important than the other. I don’t know why they feel that way. An unfortunate side-effect of this attitude is that it causes very smart people to say very silly things. Laughlin, for example, talks about the current view of string theorists — the ultimate reductionists — as represented by Brian Greene’s book The Elegant Universe.

The worldview motivating my uncle’s attitude toward Yosemite, and arguably also Brian Greene’s attitude toward physics, is expressed with great clarity in John Horgan’s The End of Science (Addison-Wesley, 1996), in which he argues that all fundamental things are now known and there is nothing left for us to do but fill in details. This pushes my experimental colleagues beyond their already strained limits of patience, for it is both wrong and completely below the belt. The search for new things always looks like a lost cause until one makes a discovery. If it were obvious what was there, one would not have to look for it.

Now, nobody could possibly have read The Elegant Universe and come away characterizing it as saying “all fundamental things are now known and there is nothing left for us to do but fill in details.” The book goes into great detail about all of the things that we don’t know, even just within the (quite considerable) scope of string theory. It doesn’t talk a lot about condensed-matter physics, but that is hardly the same as arguing that condensed-matter physics isn’t important. And it clearly does emphasize the need for experiments, even though they are very hard to do at this point.

The reason why such a smart person could say something so obviously wrong becomes clear in the next paragraph:

Unfortunately this view is widely held. I once had a conversation with the late David Schramm, the famous cosmologist at the University of Chicago, about galactic jets. These are thin pencils of plasma that beam out of some galactic cores to fabulous distances, sometimes several galactic radii, powered somehow by mechanical rotation of the core. How they can remain thin over such stupendous distances is not understood, and something I find tremendously interesting. But David dismissed the whole effect as “weather.” He was interested only in the early universe and astrophysical observations that could shed light on it, even if only marginally. He categorized the jets as annoying distractions on the grounds that they had nothing in particular to tell him about what was fundamental. I, by contrast, am fascinated by weather and believe that people claiming not to be are fibbing.

Well, sure. There are cosmologists who are not interested in non-cosmological astrophysics. There are particle physicists who are not very interested in superconductivity. Likewise, there are condensed-matter physicists and astrophysicists who are not very interested in relativity or string theory. And there are biologists who are not interested in poetry, and historians who are not interested in number theory. Let’s face it — there are academics of all stripes who are more interested in their own fields of research than in other fields. They’re not fibbing, but neither does their attitude translate into an objective statement about the worthiness of other questions.

Interestingness is like beauty — it is not located out there in the world, it is a function of the relationship between a person and a phenomenon. Things are not intrinsically interesting, they are found to be interesting by people. (In a truly precise language, it wouldn’t even be grammatically possible to say “X is interesting”; we’d only be able to say “I find X to be interesting,” or “X is found to be interesting by most people.”) I personally am interested in the nature of the dark energy that apparently constitutes seventy percent of the universe. But if someone else is not interested, they aren’t making a mistake, that’s just their honest feeling. If David Schramm wasn’t that interested in jets, we can’t simply extrapolate that one data point to a general conclusion that those arrogant reductionists are unwilling to appreciate the allure of collective behavior — some of us think that weather is fascinating, and are more than happy to admit it, even if it’s not what we want to do research on. (Not to mention the most likely explanation for the recounted conversation, which is that Schramm was simply yanking his chain.)

Unfortunately, we need to act as if these incommensurable levels of interestingness are somehow real, since we live in a world of finite resources and need to decide how they should be allocated. The good news is that there really is enough to go around, at least at the moment — we can simultaneously pursue high-energy physics and cosmology, and also contemplate astrophysics and biophysics and condensed matter. Not everyone feels that way, of course, which is why we get unfortunate incidents like Phil Anderson’s undercutting of the Superconducting Super Collider. Perhaps someday they will notice that, when funds get cut for massive reductionist experiments, they tend not to flow to research into the fascinating world of emergent phenomena, but rather to simply disappear. Can’t we all just get along?

Interestingness Read More »

Do you like pina coladas?

Okay, sometimes things don’t always end so happily.

AMMAN (AFP) – A budding romance between a Jordanian man and woman turned into an ugly public divorce when the couple found out that they were in fact man and wife, state media reported.

Separated for several months, boredom and chance briefly re-united Bakr Melhem and his wife Sanaa in an Internet chat room, the official Petra news agency said.

Do you like pina coladas? Read More »

Scroll to Top