Miscellany

A year, leapt

Here’s how bad I am at advance planning: one year ago, I started this blog on leap day, February 29th. You can look it up. Which means that I have to wait another three years before I can celebrate a proper anniversary. Not that I have the patience to wait.

I only really discovered blogs slightly over a year ago. The idea seemed interesting, but the signal-to-noise ratio was awfully low. Of course, that’s mostly a matter of finding the really good blogs out there, and eventually I was astonished at the quality of these things that people were apparently throwing together in their spare time. Roger Ailes, Pandagon, The Poor Man — how did these guys do it?

Admittedly, there weren’t many physicists out there — Jacques Distler being the lonely pioneering voice from the particle/string/cosmo crowd that I would be familiar with in my professional life. (One year later, among others, we have all of Quantum Diaries!) So, although I’ve had my own web page since about 1994, I was a little leery about jumping into this blogging thing myself. The last thing I needed was extra stuff to do.

The tipping point was noticing Michael Bérubé’s blog. Now here was a famous academic whose work I had admired for years, who was clearly much more busy than I am, who nevertheless had recently started a blog that he was regularly filling with marvelously entertaining and provocative posts, all while maintaining a rigorous hockey schedule, it seemed. If he could do it — well, okay, just because Michael can do it doesn’t mean that I could do it, but at least it means that it can be done, so why not give it a try?

So I actually emailed Michael to ask about how blogging fit in with the usual chores of academic life, and he immediately responded with words of encouragement. I still didn’t want to go through any significant wrangling with new software or any such thing, but I devoted one Sunday to trying to figure out how the basic mechanics worked. I found that blogspot provided hosting and software for free, and Haloscan did the same for comments and trackbacks, so I just went that route of least resistance. Longtime Preposterous readers will recognize that I’ve never put much effort into tweaking the aesthetics of the site, but after an afternoon of effort it seemed to be working, and we went live on February 29th.

And, lo and behold, people started visiting! My first link was from PZ Myers at Pharyngula, who soon became another blog role-model, although I will never have a fraction of his energy. Henry Farrell at the incomparable Crooked Timber added me to their blogroll, and offered other useful advice. Soon after starting up, I was invited to appear on Science Friday after a producer found the blog, and whenever I travel somewhere to give a talk I hear nice things from people who are regular or occasional readers. We’re up to about a thousand visitors per day, not that I notice or anything. Growth still seems to be linear, although you never know when it might plateau.

I’ve been pretty good at keeping to my self-imposed goal of having about one post per weekday (helped along the way by guest-bloggers Gretchen Helfrich, Lindsay Beyerstein of Majikthise, and Risa Wechsler [who has a great blogging career ahead of her when she decides to take up the challenge]). And, glancing through the archives, I actually really liked some of the posts! (Others were kind of pot-boilers, I admit.) Here are some of my personal favorites, for those of you who haven’t been regulars from the start.

I’m always asked how I can find the time to do the blog. It does take time, but it’s leisure time to me, and I honestly don’t think it affects work in any noticeable way. (Reading other people’s blogs — that’s a different matter.) Still, I would certainly never want it to become a burden. As you may have noticed, this is not a public-service blog — it exists only to amuse me. I might write a lot about physics, but that’s just because it’s what I’m often thinking about, not because I’m trying to fill any systematic science-news-reporting niche. (Although I was greatly tickled/horrified to get email from Chris Mooney saying that he was going to send me a copy of his upcoming book, in my role as a member of the media. That’s not the side of the divide that I think of myself as being on, but okay.) So, I certainly intend to keep it up, although I’ll be more than willing to reduce the pace of posting or to take a sabbatical if that seems necessary to maintain my sanity.

Thanks to everyone for reading over the last year. In celebration, I will depart from my usual custom and actually ask for suggestions on how to make the blog even better. This is your chance to sound off, so what do you think? More pictures of me? Switch to a purple background? More basketball content? Not that I will take any advice, but at least I’ll think about it.

A year, leapt Read More »

Intellectual diversity

Stanford student Aaron Swartz, via boing boing, via the apostropher:

A shocking recent study has discovered that only 13% of Stanford professors are Republicans. The authors compare this to the 51% of 2004 voters who selected a Republican for President and argue this is “evidence of discrimination” and that “academic Republicans are being eradicated by academic Democrats”.

Scary as this is, my preliminary research has discovered some even more shocking facts. I have found that only 1% of Stanford professors believe in telepathy (defined as “communication between minds without using the traditional five senses”), compared with 36% of the general population. And less than half a percent believe “people on this earth are sometimes possessed by the devil”, compared with 49% of those outside the ivory tower. And while 25% of Americans believe in astrology (“the position of the stars and planets can affect people’s lives”), I could only find one Stanford professor who would agree. (All numbers are from mainstream polls, as reported by Sokal.)

This dreadful lack of intellectual diversity is a serious threat to our nation’s youth, who are quietly being propagandized by anti-astrology radicals instead of educated with different points of view. Were I to discover that there were no blacks on the Stanford faculty, the Politically Correct community would be all up in arms. But they have no problem squeezing out prospective faculty members whose views they disagree with.

I guess the question we should be asking is: are Republicans held back from academic achievement by fear of long work weeks, or just a lack of intrinsic aptitude?

Intellectual diversity Read More »

Dark galaxies?

According to our current inventory of the universe, there is a great deal more dark matter than ordinary matter (where the dark matter is made of some particle that has never yet been observed in the laboratory). Indeed, the lovely pictures we see of galaxies should be interpreted as sprinkles of shining gas and stars settled into the lower reaches of large, extended halos of dark matter.

Of course, this idea suggests the possibility that there might be galaxies which are almost entirely made of dark matter, with very few stars at all. You might even expect that such objects should exist; there are various ways, for example, that some sort of shock wave or galactic collision could remove most of the ordinary matter from a galaxy while leaving the dark matter intact. And now there is a claim that a dark galaxy has been found. Here is the astro-ph paper being referred to in the news article. (Someday, people will understand the internet so well that they will link news stories directly to the technical papers.)

How do you find a dark galaxy? In principle you could do it by looking purely at its gravitational field, for example through gravitational lensing of background galaxies. In this case, however, the astronomers are simply using the fact that the galaxy is not 100% dark — it contains neutral hydrogen that can be detected by radio observations. But it’s not very much hydrogen; perhaps 108 solar masses, while the galaxy as a whole comes in at 1011 solar masses.

If it’s true, the existence of this galaxy would have important consequences for models of galaxy formation in the presence of dark matter. Even better, it would make it very hard to maintain that there might not be any dark matter, and instead gravity is modified on galactic scales (as in the MOND model). It’s too early to jump to conclusions, though. A skeptical note has been sounded by my erstwhile graduate-school office mate, Mike Merrifield, who points out that a chance superposition of two different small hydrogen clouds could trick you into thinking that there was one big rapidly-rotating cloud. But the observers will keep looking, gradually piecing together the ingredients of this preposterous universe.

Dark galaxies? Read More »

Old-world sensibilities

Tony Judt, writing in the New York Review about the differences between Europe and America:

Consider a mug of American coffee. It is found everywhere. It can be made by anyone. It is cheap—and refills are free. Being largely without flavor it can be diluted to taste. What it lacks in allure it makes up in size. It is the most democratic method ever devised for introducing caffeine into human beings. Now take a cup of Italian espresso. It requires expensive equipment. Price-to-volume ratio is outrageous, suggesting indifference to the consumer and ignorance of the market. The aesthetic satisfaction accessory to the beverage far outweighs its metabolic impact. It is not a drink; it is an artifact.

Ah, so unfair, and yet so true. And reminds me clearly of why I have a deeply European sensibility, although I’m much happier living in America. I remember one trip to Firenze, where amidst all the lovely art and culture and so forth, what really caught my eye was this La Pavoni espresso machine for sale in a shop window. A gleaming sculpture in chrome and black, clearly destined to be a kitchen icon as much as a functional appliance. For some reason (perhaps related to the price tag) I was able to resist the impulse to buy on one on the spot — still don’t own one, actually. But some day I will. (Perhaps an amazon.com wish list is in order?) Reviews on the web make it clear what a difficult, high-strung machine it is; getting a good pull of espresso out of it is purported to be an unpredictable labor of love. But I would be more than willing to undergo the rigorous training and practice regimen that is required, in order to enjoy the shiny presence of this marvel of design.

But I wouldn’t want to be forced to put up with such an elevated artistic temperament whenever I wanted anything to eat or drink. Sometimes you just want a cheesesteak (gourmet or otherwise). And if there’s one thing we’ve mastered here in America, it’s the lifestyle of convenience. So I’m a true American at heart. That’s why they invented airplanes, I suppose.

Old-world sensibilities Read More »

The scientific method

As much as we like to pretend that science is a rationally objective endeavor, sometimes looking at data is like doing a Rorschach test — people see what they want to see. Some of the commenters to the post below do not quite draw the same conclusions that I do from the AIP study. So let’s go through the exercise slowly.

President Summers presented three hypotheses for why there are fewer professional women scientists than men. (Picking on Summers as an individual is certainly not the point, and it’s getting kind of tiresome, but he did try to provoke people, after all.) They are:

  • “80-hour work weeks” — women have family responsibilities, and don’t want to devote the huge effort required to being a science professor.
  • “Intrinsic aptitude” — something in women’s brains makes them just not as good at science, at least at the upper levels.
  • Systematic biases — women are discriminated against, or at least pressured away from, becoming scientists.

These are in decreasing order of importance, in Summers’ estimation. (Although, sympathetic as he is, he’d love to be proven wrong.) They are good solid hypotheses, in that they make predictions that can be compared with the data. So let’s do it.

The AIP study considered the representation of women in science at different levels up the ladder, from high school to full professors. It found that the biggest leakage of women from the pipeline was between high school and college; once women got their bachelor’s, their representation at higher levels is consistent with what we expect from a gender-independent rate of success, given the obvious time lags it takes for people to progress through the various stages. What do our hypotheses predict? The 80-hour-work-week idea makes a pretty clean prediction: as we travel up the ladder and the competing pressures of work and family become more real and more evident, women should preferentially be dropping out. And this prediction is — false. If the workload and childrearing pressures are to blame, why would the effect be localized during high school and college? Of course, a good theorist can wriggle out of any experimental finding. For example, we could imagine that female undergraduates very effectively anticipate the upcoming work/family squeeze, and get out while the getting is good. Except that, they don’t. Of all the reasons why college students have given me why they wouldn’t become physics majors, “I’m worried that some day I won’t have time to both be a good science professor and also raise children, and therefore I’m going to medical school instead” has never been one of them.

So let’s consider “intrinsic aptitude.” The idea here is that there is a bell-curve distribution of cognitive abilities, and that the curves are different for men and women. Either the mean for women is simply lower, or the standard deviation is smaller. In either case, as we get far out along the exponential tail at high levels of achievement, there is a very clear prediction: the ratio of successful women to successful men should become dramatically smaller and smaller. So as we look up the pipeline, women should be dropping out more and more as we climb up the ladder. And again the prediction is — false.

What about the idea of systematic biases? Unfortunately, this hypothesis doesn’t really make any good predictions for this particular test. Until you tell me what the biases are, I can’t predict when they will operate most strongly. Of course I can come up with glib stories after the fact, suggesting that the biases are most pronounced at the point when students are making choices about what major to pick — and indeed I did come up with that story, and I think it’s likely to be true. But these data don’t really give us much evidence one way or the other.

The “biases” hypothesis does make predictions for other experiments, of course. For example, it would predict that women would suffer subjective biases in blind experiments where people are asked to judge work by men and women. And indeed, they do.

Likewise, the intrinsic-aptitude hypothesis makes other predictions. For example, it would predict that the fraction of women is basically the same everywhere, since it’s intrinsic rather than due to social factors. That’s wrong. It would also predict that the number of women in the field is remaining approximately constant, for the same reason. That’s wrong, too. Of course, you could claim that the true, unbiased fraction of women receiving Ph.D.’s should be about five percent, and is only 18% now because of the pressures of political correctness forcing unqualified women into this role. You would, to be sure, be implicitly admitting that social factors can easily trump intrinsic differences, except that you’d be thinking that these factors work in women’s favor. You should also look into loosening the elastic band on your tinfoil hat.

The scientific method Read More »

When do women leave physics?

When do women leave physics? Short answer: between high school and college. Afterwards, women and men perform approximately as you would expect at getting into grad school and getting jobs, given the dearth of women with bachelor’s degrees.

That’s the conclusion of this American Institute of Physics study (pdf), as reported in the New York Times. At the high school level, almost half of physics students are female (46% in 2003). But then less than a quarter of students who earn bachelor’s degrees are women. After that, women seem to advance at the same rate as men; the “pipeline” doesn’t seem to be all that leaky, except for the one huge geyser during undergraduate years. Which means that, among other things, it’s really hard to place the blame on something inherent in women’s brains, unless that something chooses to manifest itself only in college. (Meanwhile, college is the easiest place for systematic biases to be important, since that’s when students are choosing what fields to concentrate in.)


So, the news is mixed. There is good news in that the numbers continue to improve, and there’s every reason to believe we will eventually reach essentially fifty-fifty numbers of men and women in the field. According to the study, the percentage of Ph.D’s in physics that are awarded to women has gone from about 5% to over 15% in the last twenty-five years. Still a long way to go, but getting there. Also good news is that there doesn’t seem to be much discrimination at the highest levels of the academic food chain. (There certainly are fairly obvious individual examples of discrimination, but fortunately they don’t seem to be having a large impact overall.)

The bad news is that there is still a systematic bias turning women away from physics during the college years, and that we really do have a long way to go. While it’s true that things are likely to continue to improve, it’s not because the natural tendency of things is to automatically get better, but because people keep fighting for them to do so.

Oh yes, it’s also bad news for those rigorous scholars who propose that the leading causes of women’s underrepresentation are that they don’t want to work as hard, and that they lack the necessary intrinsic aptitude. Because studies like this show that those ideas are, how should we put it, inconsistent with the data. And therefore, by ordinary scientific standards, wrong. But don’t let that stop you from suggesting hypotheses!

When do women leave physics? Read More »

Mingling

Here’s an interesting graph from the most recent issue of symmetry. As cognocenti well know, there are a number of subject classifications for physics preprints on arxiv.org. These include the original hep-th for formal high-energy theory, hep-ph for more phenomenological theory, hep-ex for high-energy experiment, gr-qc for general relativity and quantum cosmology, and so on. The histogram indicates the percentage of papers in hep-th and hep-ph that cite papers from astro-ph, the astrophysics archive. The connection with phenomenology is no surprise, as issues of dark matter and baryogenesis are driving some of the most interesting questions in particle physics today. But the connection with “formal” theory (largely string theory) is interesting. I’m willing to bet that the biggest driver of this connection is the discovery of the accelerating universe — string theorists are now catching on that they shouldn’t be thinking about compactifications with zero cosmological constant, but rather vacua with a small amount of dark energy. Of course, it took a couple of years to catch on, as the acceleration of the universe was discovered in 1998. But it’s nice to see research in quantum gravity influenced by real data.

Mingling Read More »

Dark Matter and Dark Energy: from the Universe to the Laboratory

Here’s an html version of the slides from my public lecture that I gave in Aspen last week. It’s also available as pdf, coming in at a healthy 3MB. I was pretty ambitious, explaining not just the observational situation with respect to dark matter and dark energy, but also going into fermions and bosons, and theoretical ideas of extra dimensions and supersymmetry. It was the first time I gave this particular talk; next time I’ll try to take out a couple of slides and go at a more leisurely pace.

Dark Matter and Dark Energy: from the Universe to the Laboratory Read More »

AAAS report

I’m back from the annual meeting of the American Association for the Advancement of Science, which was held this year in Washington, DC. The AAAS is a useful organization whose existence is largely ignored by physicists. Their most obvious contribution is publishing Science, which (like its UK counterpart Nature) tends to deal more with biology, chemistry, medicine, and the environment than with physics. The annual meetings reflect this emphasis; physics is only a tiny part of the proceedings, although some of us would like to see it be more prominent.

The thing that separates AAAS from professional societies such as the American Physical Society or American Astronomical Society is the word advancement. The AAAS is especially concerned with the interactions between science and the outside world — through education, public policy, and media outreach. One of the main purposes of the annual meeting (maybe the main purpose) is to bring scientists in contact with interested journalists. Something that surprised me when I first realized it, but seems obvious in retrospect, is that science journalists don’t typically have the luxury of flying around to topical conferences to get a feel for what is interesting within some specialized field. Except at the very largest outlets, most science writers have to pore through press releases to find their stories; if they’re especially dedicated, they may scan Science or Nature or even the arxiv, but those are the exceptions. So the AAAS meeting provides a nice opportunity for scientists and journalists to mingle in the flesh; not coincidentally, the annual meeting of the National Association of Science Writers is usually held in conjunction with the AAAS.

(I won’t even bother to make the argument that it is good for scientists and journalists to mingle — good for science, and good for the interested public [which is most of the public]. Some scientists stay away from journalists because they think they won’t be taken seriously if they appear in the media, and some are quite explicitly disparaging of their colleagues who do. That’s a rant for another day.)

My main role this year was as the organizer of a symposium on Understanding Dark Energy. (That’s a link to the symposium web page I set up; you can also read our press release, or the symposium summary in pdf.) I thought it was successful, with maybe 150 people in the audience. We had three hours and six speakers, so the talks were short and sweet. I opened with a brief description of why we believe in dark energy, what the theoretical puzzles are that we are trying to solve, and the things we hope to learn from new experiments. Adam Riess went next; Adam was the lead author on the first of the 1998 papers that presented evidence for an accelerating universe from observations of high-redshift supernovae. He talked about the future of supernova cosmology, both from ground-based and space-based observations, and how we can simultaneously constrain the equation-of-state parameter w and its time derivative. Lenny Susskind went next, saying how happy he was to be at an AAAS meeting giving a talk on biology. That’s because he went on to compare the number of possible vacua of string theory (the “landscape”) to the number of possible biological organisms you could get by arranging base pairs in a DNA molecule — the former is perhaps 10500, while the latter is maybe 1025000000000. So biology wins, but the lesson we are supposed to learn is that a large variety of possibilities is what enables the development of intelligent life; in the context of string theory, it is the large number of stable vacua that makes it possible to find one with a sufficiently small vacuum energy so that life can evolve. (This is the press release that Peter Woit was lamenting.)

Next up was Licia Verde, talking about what we could learn from structure in the universe, combining constraints from early times (the cosmic microwave background) and late times (galaxy surveys). She had a nice analogy with waves on the ocean, driven by wind until they become non-linear and interesting to surfers: if the ocean were made of honey, the waves would evolve quite differently. Likewise, structure in the universe evolves in a way that depends on the underlying constituents, which can be used to discover properties of dark matter and dark energy. Switching back to outlandish speculations, Gia Dvali talked about how we could get an accelerating universe even without dark energy, if gravity were modified on large scales. An important point from his talk is that you can never modify gravity only on cosmological scales — effects always leak down to smaller distances. In the case of a simple theory like mine, these effects are dramatic, and rule out the model definitively. In the case of a more subtle theory like Gia’s, the effects are less pronounced, and the model is not yet ruled out; but it is certainly testable, especially by high-precision measurements of the orbit of the Moon. We closed with a fantastic talk by John Carlstrom, who described how clusters of galaxies will be a new method to probe the expansion history of the universe. John is the world’s expert at observing the Sunyaev-Zeldovich effect, the scattering of microwave-background photons by the hot gas in galaxy clusters. Since what you observe in the SZ effect is a shadow on the CMB rather than the direct emission of light, the effect does not diminish as the clusters get farther away — they can be found at any redshift, and the rate at which they assemble as a function of time reveals a lot about the way the universe evolved. John and his collaborators are building two impressive projects to make SZ surveys: an array of eight telescopes in California, and one giant radio telescope at the South Pole (a similar project, the Atacama Cosmology Telescope, is also underway in Chile). With all these new data coming in, it won’t be surprising if theorists are once again startled by something we discover in the real world.

There are a plethora of different symposia at the AAAS, and the sexiest and most media-friendly are granted separate press conferences. For some reason, the press briefings are held before the symposia themselves; this gives reporters the feeling that they have first access to the news, but it means that they are asking questions before they’ve actually heard the talks. Still, we had a well-attended and sprightly press briefing. Since we didn’t announce any stunning new results, I think the effect will be largely in the background, helping journalists understand what is going on and preparing them for future discoveries. But there have already been a couple of stories, prompted by those wild theoretical ideas: one on the landscape, and one on modified gravity. (Update: Here’s another, from Astronomy magazine.)

Somehow I was also involved with another press conference, this one as part of the celebration of Einstein’s miraculous decade, 1905-1915. Einstein started off the decade with three spectacular papers, any one of which would be the highlight of the career of an ordinary physicist: explaining Brownian motion in terms of atoms, inventing the photon as an explanation for the photoelectric effect, and establishing special relativity. But he was just getting started, and ten years later he came out with his capstone achievement, the general theory of relativity. The other panelists for this briefing were Rolf Sinclair, Richard Wolfson, and Barry Barish. (The three of them also appeared on Science Friday with Ira Flatow, while I was busy at the dark energy symposium.) The highlight of this briefing was the unveiling of Einstein@Home, a screensaver program that uses your unwanted CPU cycles to look for signals of spinning pulsars in real data from LIGO, the Laser Interferometric Gravitational-Wave Observatory. Barry introduced Bruce Allen of the University of Wisconsin-Milwaukee, who has been instrumental in developing the Einstein@Home software. The ultimate pay-off is not quite as exciting as for SETI@Home, but the likelihood of actually finding something is much higher!

Barry Barish, by the way, is one of the most impressive physicists you will ever meet. He was trained as a particle physicist, and did some of the first experiments to discover weak neutral currents, key to the Glashow-Weinberg-Salam model of the electroweak interactions. And now, having smoothly shifted gears, he is Director of the LIGO laboratory. But Barry hasn’t forgotten about particle physics; he is extremely active in planning for future experiments, most recently as the head of the committee to decide on the basic technology for the planned International Linear Collider, the hoped-for follow-up to the Large Hadron Collider. He gave a great talk at a session on high-energy colliders, in which he explained the process by which the committee decided on the “cold” (superconducting) option rather than the “warm” option. The miracle is how quickly the worldwide community has dropped what they were doing to rally around this decision; that wasn’t so hard for the folks at DESY in Germany who had developed the superconducting technology (TESLA) in the first place, but the people in Japan and at SLAC who were pushing for the warm technology were also very quick to get on board once the decision had been made. Now all that remains is to figure out where to build it (outside Fermilab would make sense), and who will pay. (For info on the current climate, see comments at Peter’s blog.) The total cost is estimated to come in around five to eight billion dollars, which for comparison purposes is about one percent the cost of a manned mission to Mars.

My final event at AAAS was a TV interview with ScienCentral. This is an interesting outfit that makes short science stories, then sells them to other media outlets (like your local news program). They interview you on tape for half an hour or so, and then will chop it up into TV-sized morsels afterwards. (After some practice, I’m pretty comfortable on radio and TV by now, but I still need work on speaking in sound bites instead of elaborate paragraphs.) The woman interviewing me, Joyce Gramza, was initially skeptical about the whole cosmology thing, since she had just finished a bunch of interviews with scientists whose work actually had a tangible impact, like getting flu shots to people. Of course science does have an important impact on our daily lives, but that’s not the whole point of it — there’s also the straightforward human pleasure of learning about the universe around us. Most people will accept that if you tell it to them honestly, rather than trying to pretend that we really study dark energy because it will someday lead to a cure for cancer. Joyce seemed to buy my argument, and by the end was saying that I should get my own show, which was nice of her. She also complained that she was interested in mathematics and physics as a student, but was consistently discouraged from studying them because she was a girl. I guess she just wasn’t honest enough with herself to admit that she probably didn’t have the intrinsic aptitude that us boys are blessed with.

One of the pleasures of combining a big meeting like the AAAS with a power center like DC is that you keep bumping into celebrities. I ran into Shirley Ann Jackson, who is President of the AAAS and also of Rensselaer Polytechnic Institute (I guess she hasn’t been honest with herself either). And I went to a panel discussion on how to write and sell popular-level science books, which featured none other than John Derbyshire. Okay, he’s not really a celebrity outside the blogosphere, but still. He was generally charming in an English-public-school sort of way; but no mention of LSD trips, and I didn’t have the heart to ask. Finally, as I was heading out of my hotel I noticed Ralph Nader in the lobby chatting with some people. He’s taller than he seems on TV.

I almost didn’t write this post because I thought there wasn’t that much to say. But I see I’ve gone on at unseemly length. This is what you get when I have an hour to kill in the airport before my flight back to Chicago.

AAAS report Read More »

Networking

Seems like everyone on the left-hand side of the blogosphere is having great fun with David Horowitz’s latest misadventure, DiscoverTheNetwork: A Guide to the Political Left. (See e.g. Michael Bérubé, Pharyngula, Crooked Timber.) The website tracks the many connections between the vast left-wing conspiracy that has been so effective at keeping conservatives out of power in this country. It’s pure comedy gold, I have to admit. I mean, consider the following set of people:


Quite a motley crew, wouldn’t you say? Anyone who thinks that these folks are part of some common “network” is just a fruitcake. To any right-wingers out there who might harbor suspicions, trust me on this: Bruce Springsteen is not lunching with Abu Musab al-Zarqawi, nor is Howard Dean planning on bringing Fidel Castro to help him on the Democratic National Committee. Look, guys: the Ayatollah Khomeini was not a leftist, okay?

But beyond the laughs, there is something ugly and offensive going on. Look at the last paragraph of the entry for Barack Obama:

Who and what is the real Barack Obama? “I am a Christian,” he told the Chicago Sun-Times last April to assuage all those who had asked if he had any religion at all. “I have a deep faith.” The mother that a decade ago he described in his book as a “lonely witness for secular humanism” he now describes as “a Christian.” It is here we are told that his stepfather in Indonesia, where Barack spent two years in a Muslim Madrassah, was a “non-practicing Muslim.” Obama and his wife and two young daughters now attend Chicago’s liberal Trinity United Church of Christ. “Obama doesn’t believe he, or anyone else, will go to hell,” wrote Sun-Times reporter Cathleen Falsani, “But he’s not sure if he’’ll be going to heaven, either.”

I presume the insinuation here isn’t too subtle for anyone to decode. Sure, this guy with the funny name “Obama” claims to be a Christian, and apparently is devious enough to actually attend church (albeit a “liberal” one). But don’t let that fool you: his stepfather was a Muslim, and he spend two years in a Madrassah. In Horowitz’s crazed world, this is tantamount to an al-Qaeda membership card. As Matthew Yglesias says: What’s wrong with you people?

Networking Read More »

Scroll to Top