Humor

Joe Polchinski’s Memories, and a Mark Wise Movie

Joe Polchinski, a universally-admired theoretical physicist at the Kavli Institute for Theoretical Physics in Santa Barbara, recently posted a 150-page writeup of his memories of doing research over the years.

Memories of a Theoretical Physicist
Joseph Polchinski

While I was dealing with a brain injury and finding it difficult to work, two friends (Derek Westen, a friend of the KITP, and Steve Shenker, with whom I was recently collaborating), suggested that a new direction might be good. Steve in particular regarded me as a good writer and suggested that I try that. I quickly took to Steve’s suggestion. Having only two bodies of knowledge, myself and physics, I decided to write an autobiography about my development as a theoretical physicist. This is not written for any particular audience, but just to give myself a goal. It will probably have too much physics for a nontechnical reader, and too little for a physicist, but perhaps there with be different things for each. Parts may be tedious. But it is somewhat unique, I think, a blow-by-blow history of where I started and where I got to. Probably the target audience is theoretical physicists, especially young ones, who may enjoy comparing my struggles with their own. Some disclaimers: This is based on my own memories, jogged by the arXiv and Inspire. There will surely be errors and omissions. And note the title: this is about my memories, which will be different for other people. Also, it would not be possible for me to mention all the authors whose work might intersect mine, so this should not be treated as a reference work.

As the piece explains, it’s a bittersweet project, as it was brought about by Joe struggling with a serious illness and finding it difficult to do physics. We all hope he fully recovers and gets back to leading the field in creative directions.

I had the pleasure of spending three years down the hall from Joe when I was a postdoc at the ITP (it didn’t have the “K” at that time). You’ll see my name pop up briefly in his article, sadly in the context of an amusing anecdote rather than an exciting piece of research, since I stupidly spent three years in Santa Barbara without collaborating with any of the brilliant minds on the faculty there. Not sure exactly what I was thinking.

Joe is of course a world-leading theoretical physicist, and his memories give you an idea why, while at the same time being very honest about setbacks and frustrations. His style has never been to jump on a topic while it was hot, but to think deeply about fundamental issues and look for connections others have missed. This approach led him to such breakthroughs as a new understanding of the renormalization group, the discovery of D-branes in string theory, and the possibility of firewalls in black holes. It’s not necessarily a method that would work for everyone, especially because it doesn’t necessarily lead to a lot of papers being written at a young age. (Others who somehow made this style work for them, and somehow survived, include Ken Wilson and Alan Guth.) But the purity and integrity of Joe’s approach to doing science is an example for all of us.

Somehow over the course of 150 pages Joe neglected to mention perhaps his greatest triumph, as a three-time guest blogger (one, two, three). Too modest, I imagine.

His memories make for truly compelling reading, at least for physicists — he’s an excellent stylist and pedagogue, but the intended audience is people who have already heard about the renormalization group. This kind of thoughtful but informal recollection is an invaluable resource, as you get to see not only the polished final product of a physics paper, but the twists and turns of how it came to be, especially the motivations underlying why the scientist chose to think about things one way rather than some other way.

(Idea: there is a wonderful online magazine called The Players’ Tribune, which gives athletes an opportunity to write articles expressing their views and experiences, e.g. the raw feelings after you are traded. It would be great to have something like that for scientists, or for academics more broadly, to write about the experiences [good and bad] of doing research. Young people in the field would find it invaluable, and non-scientists could learn a lot about how science really works.)

You also get to read about many of the interesting friends and colleagues of Joe’s over the years. A prominent one is my current Caltech colleague Mark Wise, a leading physicist in his own right (and someone I was smart enough to collaborate with — with age comes wisdom, or at least more wisdom than you used to have). Joe and Mark got to know each other as postdocs, and have remained friends ever since. When it came time for a scientific gathering to celebrate Joe’s 60th birthday, Mark contributed a home-made movie showing (in inimitable style) how much progress he had made over the years in the activities they had enjoyed together in their relative youth. And now, for the first time, that movie is available to the whole public. It’s seven minutes long, but don’t make the mistake of skipping the blooper reel that accompanies the end credits. Many thanks to Kim Boddy, the former Caltech student who directed and produced this lost masterpiece.

Mark Wise, for Joe Polchinski's 60th Birthday

When it came time for his own 60th, Mark being Mark he didn’t want the usual conference, and decided instead to gather physicist friends from over the years and take them to a local ice rink for a bout of curling. (Canadian heritage showing through.) Joe being Joe, this was an invitation he couldn’t resist, and we had a grand old time, free of any truly serious injuries.

We don’t often say it out loud, but one of the special privileges of being in this field is getting to know brilliant and wonderful people, and interacting with them over periods of many years. I owe Joe a lot — even if I wasn’t smart enough to collaborate with him when he was down the hall, I learned an enormous amount from his example, and often wonder how he would think about this or that issue in physics.

 

Joe Polchinski’s Memories, and a Mark Wise Movie Read More »

3 Comments

Does Santa Exist?

There’s a claim out there — one that is about 95% true, as it turns out — that if you pick a Wikipedia article at random, then click on the first (non-trivial) link, and keep clicking on the first link of each subsequent article, you will end up at Philosophy. More specifically, you will end up at a loop that runs through Reality, Existence, Awareness, Consciousness, and Quality (philosophy), as well as Philosophy itself. It’s not hard to see why. These are the Big Issues, concerning the fundamental nature of the universe at a deep level. Almost any inquiry, when pressed to ever-greater levels of precision and abstraction, will get you there.

Does Santa Exist? Take, for example, the straightforward-sounding question “Does Santa Exist?” You might be tempted to say “No” and move on. (Or you might be tempted to say “Yes” and move on, I don’t know — a wide spectrum of folks seem to frequent this blog.) But even to give such a common-sensical answer is to presume some kind of theory of existence (ontology), not to mention a theory of knowledge (epistemology). So we’re allowed to ask “How do you know?” and “What do you really mean by exist?”

These are the questions that underlie an entertaining and thought-provoking new book by Eric Kaplan, called Does Santa Exist?: A Philosophical Investigation. Eric has a resume to be proud of: he is a writer on The Big Bang Theory, and has previously written for Futurama and other shows, but he is also a philosopher, currently finishing his Ph.D. from Berkeley. In the new book, he uses the Santa question as a launching point for a rewarding tour through some knotty philosophical issues. He considers not only a traditional attack on the question, using Logic and the beloved principles of reason, but sideways approaches based on Mysticism as well. (“The Buddha ought to be able to answer our questions about the universe for like ten minutes, and then tell us how to be free of suffering.”) His favorite, though, is the approach based on Comedy, which is able to embrace contradiction in a way that other approaches can’t quite bring themselves to do.

Most people tend to have a pre-existing take on the Santa question. Hence, the book trailer for Does Santa Exist? employs a uniquely appropriate method: Choose-Your-Own-Adventure. Watch and interact, and you will find the answers you seek.

Does Santa Exist? Read More »

15 Comments

Single Superfield Inflation: The Trailer

This is amazing. (Via Bob McNees and Michael Nielsen on Twitter.)

Single Superfield Inflation

Backstory for the puzzled: here is a nice paper that came out last month, on inflation in supergravity.

Inflation in Supergravity with a Single Chiral Superfield
Sergei V. Ketov, Takahiro Terada

We propose new supergravity models describing chaotic Linde- and Starobinsky-like inflation in terms of a single chiral superfield. The key ideas to obtain a positive vacuum energy during large field inflation are (i) stabilization of the real or imaginary partner of the inflaton by modifying a Kahler potential, and (ii) use of the crossing terms in the scalar potential originating from a polynomial superpotential. Our inflationary models are constructed by starting from the minimal Kahler potential with a shift symmetry, and are extended to the no-scale case. Our methods can be applied to more general inflationary models in supergravity with only one chiral superfield.

Supergravity is simply the supersymmetric version of Einstein’s general theory of relativity, but unlike GR (where you can consider just about any old collection of fields to be the “source” of gravity), the constraints of supersymmetry place quite specific requirements on what counts as the “stuff” that creates the gravity. In particular, the allowed stuff comes in the form of “superfields,” which are combinations of boson and fermion fields. So if you want to have inflation within supergravity (which is a very natural thing to want), you have to do a bit of exploring around within the allowed set of superfields to get everything to work. Renata Kallosh and Andrei Linde, for example, have been examining this problem for quite some time.

What Ketov and Terada have managed to do is boil the necessary ingredients down to a minimal amount: just a single superfield. Very nice, and worth celebrating. So why not make a movie-like trailer to help generate a bit of buzz?

Which is just what Takahiro Terada, a PhD student at the University of Tokyo, has done. The link to the YouTube video appeared in an unobtrusive comment in the arxiv page for the revised version of their paper. iMovie provides a template for making such trailers, so it can’t be all that hard to do — but (1) nobody else does it, so, genius, and (2) it’s a pretty awesome job, with just the right touch of humor.

I wouldn’t have paid nearly as much attention to the paper without the trailer, so: mission accomplished. Let’s see if we can’t make this a trend.

Single Superfield Inflation: The Trailer Read More »

28 Comments

I’m Not Sure That’s How Probability Works, Walter

Tonight marks the debut of John Oliver’s Last Week Tonight on HBO. JenLuc Piquant reminds us of one of the former Daily Show correspondent’s finest moments: confronting Walter Wagner on why he thought black holes from the LHC were a threat to the existence of the Earth.

I’m Not Sure That’s How Probability Works, Walter Read More »

5 Comments

Einstein and Pi

Each year, the 14th of March is celebrated by scientifically-minded folks for two good reasons. First, it’s Einstein’s birthday (happy 135th, Albert!). Second, it’s Pi Day, because 3/14 is the closest calendrical approximation we have to the decimal expansion of pi, π =3.1415927….

Both of these features — Einstein and pi — are loosely related by playing important roles in science and mathematics. But is there any closer connection?

Of course there is. We need look no further than Einstein’s equation. I mean Einstein’s real equation — not E=mc2, which is perfectly fine as far as it goes, but a pretty straightforward consequence of special relativity rather than a world-foundational relationship in its own right. Einstein’s real equation is what you would find if you looked up “Einstein’s equation” in the index of any good GR textbook: the field equation relating the curvature of spacetime to energy sources, which serves as the bedrock principle of general relativity. It looks like this:

einstein-eq

It can look intimidating if the notation is unfamiliar, but conceptually it’s quite simple; if you don’t know all the symbols, think of it as a little poem in a foreign language. In words it is saying this:

(gravity) = 8 π G × (energy and momentum).

Not so scary, is it? The amount of gravity is proportional to the amount of energy and momentum, with the constant of proportionality given by 8πG, where G is a numerical constant.

Hey, what is π doing there? It seems a bit gratuitous, actually. Einstein could easily have defined a new constant H simply be setting H=8πG. Then he wouldn’t have needed that superfluous 8π cluttering up his equation. Did he just have a special love for π, perhaps based on his birthday?

The real story is less whimsical, but more interesting. Einstein didn’t feel like inventing a new constant because G was already in existence: it’s Newton’s constant of gravitation, which makes perfect sense. General relativity (GR) is the theory that replaces Newton’s version of gravitation, but at the end of the day it’s still gravity, and it has the same strength that it always did.

So the real question is, why does π make an appearance when we make the transition from Newtonian gravity to general relativity?

Well, here’s Newton’s equation for gravity, the famous inverse square law:

inverse-square

It’s actually similar in structure to Einstein’s equation: the left hand side is the force of gravity between two objects, and on the right we find the masses m1 and m2 of the objects in question, as well as the constant of proportionality G. (For Newton, mass was the source of gravity; Einstein figured out that mass is just one form of energy, and upgraded the source of gravity to all forms of energy and momentum.) And of course we divide by the square of the distance r between the two objects. No π’s anywhere to be found.

It’s a great equation, as physics equations go; one of the most influential in the history of science. But it’s also a bit puzzling, at least philosophically. It tells a story of action at a distance — two objects exert a gravitational force on each other from far away, without any intervening substance. Newton himself considered this to be an unacceptable state of affairs, although he didn’t really have a good answer:

That Gravity should be innate, inherent and essential to Matter, so that one body may act upon another at a distance thro’ a Vacuum, without the Mediation of any thing else, by and through which their Action and Force may be conveyed from one to another, is to me so great an Absurdity that I believe no Man who has in philosophical Matters a competent Faculty of thinking can ever fall into it.

But there is an answer to this conundrum. It’s to shift one’s focus from the force of gravity, F, to the gravitational potential field, Φ (Greek letter “phi”), from which the force can be derived. The field Φ fills all of space, taking some specific value at every point. In the vicinity of a single body of mass M, the gravitational potential field is given by this equation:

grav-potential

This equation bears a close resemblance to Newton’s original one. It depends inversely on the distance, rather than the distance squared, because it’s not the gravitational force directly; the force is given by the derivative (slope) of the field, which turns 1/r into 1/r2.

That’s nice, since we’ve replaced the spookiness of action at a distance with the pleasantly mechanical notion of a field filling all of space. Still no π’s, though.

But our equation only tells us what happens when we have a single body with mass M. What if we have many objects, each creating its own gravitational field, or for that matter a gas or fluid spread throughout some region? Then we need to talk about the mass density, or the amount of mass per each little volume of space, conventionally denoted ρ (Greek letter “rho”). And indeed there is an equation that relates the gravitational potential field to an arbitrary mass density spread throughout space, known as Poisson’s equation:

poisson-eq

The upside-down triangle is the gradient operator (here squared to make the Laplacian); it’s a fancy three-dimensional way of saying how the field is changing through space (its vectorial derivative). But even more exciting, π has now appeared on the right-hand side! Why is that?

There is a technical mathematical explanation, of course, but here is the rough physical explanation. Whereas we were originally concerned (in Newton’s equation or the first equation for Φ) with the gravitational effect of a single body at a distance r, we’re now adding up all the accumulated effects of everything in the universe. That “adding up” (integrating) can be broken into two steps: (1) add up all the effects at some fixed distance r, and (2) add up the effects from all distances. In that first step, all the points at some distance r from any fixed location define a sphere centered on that location. So we’re really adding up effects spread over the area of a sphere. And the formula for the area of a sphere, of course, is:

area-sphere

Seems almost too trivial, but that’s really the answer. The reason π comes into Poisson’s equation and not Newton’s is that Newton cared about the force between two specific objects, while Poisson tells us how to calculate the potential as a function of a matter density spread all over the place, and in three dimensions “all over the place” means “all over the area of a sphere” and then “adding up each sphere.” (We add up spheres, rather than cubes or whatever, because spheres describe fixed distances from the point of interest, and gravity depends on distance.) And the area of a sphere, just like the circumference of a circle, is proportional to π.

isq

So then what about Einstein? Back in Newtonian gravity, it was often convenient to use the gravitational potential field, but it wasn’t really necessary; you could always in principle calculate the gravitational force directly. But when Einstein formulated general relativity, the field concept became absolutely central. The thing one calculates is not the force due to gravity (indeed, there’s a sense in which gravity isn’t really a “force” in general relativity), but rather the geometry of spacetime. That is fixed by the metric tensor field, a complicated beast that includes as a subset what we call the gravitational potential field. Einstein’s equation is directly analogous to Poisson’s equation, not to Newton’s.

So that’s the Einstein-Pi connection. Einstein figured out that gravity is best described by a field theory rather than as a direct interaction between individual bodies, and connecting fields to localized bodies involves integrating over the surface of a sphere, and the area of a sphere is proportional to π. The whole birthday thing is just a happy accident.

Einstein and Pi Read More »

53 Comments

Time Travel via YouTube

Via everywhere on the internet, here’s Jeremiah McDonald, who used a 20-year-old videotape of his younger self to carry on a conversation across time. (Seems legit at a casual glance, but I suppose it could be faked.)

A Conversation With My 12 Year Old Self: 20th Anniversary Edition

Sadly we can’t actually transfer information into the past. If we could, I would have started writing this book a bit earlier.

Time Travel via YouTube Read More »

13 Comments

Quote of the Day

Hey, anyone remember the lawsuits that were trying to shut down the LHC? They were finally dismissed by a federal appeals court in 2010, with the following concise summary of the situation:

Accordingly, the alleged injury, destruction of the earth, is in no way attributable to the U.S. government’s failure to draft an environmental impact statement.

Of course, maybe we’re just lucky enough to live in the branch of the wave function where the disaster didn’t happen?

Quote of the Day Read More »

14 Comments
Scroll to Top