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6 Weak Fields and Gravitational Radiation

When we first derived Einstein’s equations, we checked that we were on the right track by

considering the Newtonian limit. This amounted to the requirements that the gravitational
field be weak, that it be static (no time derivatives), and that test particles be moving slowly.

In this section we will consider a less restrictive situation, in which the field is still weak but

it can vary with time, and there are no restrictions on the motion of test particles. This

will allow us to discuss phenomena which are absent or ambiguous in the Newtonian theory,

such as gravitational radiation (where the field varies with time) and the deflection of light

(which involves fast-moving particles).
The weakness of the gravitational field is once again expressed as our ability to decompose

the metric into the flat Minkowski metric plus a small perturbation,

gµν = ηµν + hµν , |hµν | << 1 . (6.1)

We will restrict ourselves to coordinates in which ηµν takes its canonical form, ηµν =

diag(−1, +1, +1, +1). The assumption that hµν is small allows us to ignore anything that is

higher than first order in this quantity, from which we immediately obtain

gµν = ηµν − hµν , (6.2)

where hµν = ηµρηνσhρσ. As before, we can raise and lower indices using ηµν and ηµν , since

the corrections would be of higher order in the perturbation. In fact, we can think of

the linearized version of general relativity (where effects of higher than first order in hµν

are neglected) as describing a theory of a symmetric tensor field hµν propagating on a flat
background spacetime. This theory is Lorentz invariant in the sense of special relativity;

under a Lorentz transformation xµ′

= Λµ′

µxµ, the flat metric ηµν is invariant, while the

perturbation transforms as

hµ′ν′ = Λµ′
µΛν′

νhµν . (6.3)

(Note that we could have considered small perturbations about some other background

spacetime besides Minkowski space. In that case the metric would have been written gµν =

g(0)
µν + hµν , and we would have derived a theory of a symmetric tensor propagating on the

curved space with metric g(0)
µν . Such an approach is necessary, for example, in cosmology.)

We want to find the equation of motion obeyed by the perturbations hµν , which come by
examining Einstein’s equations to first order. We begin with the Christoffel symbols, which

are given by

Γρ
µν =

1

2
gρλ(∂µgνλ + ∂νgλµ − ∂λgµν)
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=
1

2
ηρλ(∂µhνλ + ∂νhλµ − ∂λhµν) . (6.4)

Since the connection coefficients are first order quantities, the only contribution to the Rie-

mann tensor will come from the derivatives of the Γ’s, not the Γ2 terms. Lowering an index

for convenience, we obtain

Rµνρσ = ηµλ∂ρΓ
λ
νσ − ηµλ∂σΓ

λ
νρ

=
1

2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ) . (6.5)

The Ricci tensor comes from contracting over µ and ρ, giving

Rµν =
1

2
(∂σ∂νh

σ
µ + ∂σ∂µhσ

ν − ∂µ∂νh − !hµν) , (6.6)

which is manifestly symmetric in µ and ν. In this expression we have defined the trace of
the perturbation as h = ηµνhµν = hµ

µ, and the D’Alembertian is simply the one from flat

space, ! = −∂2
t + ∂2

x + ∂2
y + ∂2

z . Contracting again to obtain the Ricci scalar yields

R = ∂µ∂νh
µν − !h . (6.7)

Putting it all together we obtain the Einstein tensor:

Gµν = Rµν −
1

2
ηµνR

=
1

2
(∂σ∂νh

σ
µ + ∂σ∂µhσ

ν − ∂µ∂νh − !hµν − ηµν∂µ∂νh
µν + ηµν!h) . (6.8)

Consistent with our interpretation of the linearized theory as one describing a symmetric

tensor on a flat background, the linearized Einstein tensor (6.8) can be derived by varying
the following Lagrangian with respect to hµν :

L =
1

2

[
(∂µh

µν)(∂νh) − (∂µhρσ)(∂ρh
µ

σ) +
1

2
ηµν(∂µh

ρσ)(∂νhρσ) − 1

2
ηµν(∂µh)(∂νh)

]
. (6.9)

I will spare you the details.

The linearized field equation is of course Gµν = 8πGTµν , where Gµν is given by (6.8)
and Tµν is the energy-momentum tensor, calculated to zeroth order in hµν . We do not

include higher-order corrections to the energy-momentum tensor because the amount of

energy and momentum must itself be small for the weak-field limit to apply. In other words,

the lowest nonvanishing order in Tµν is automatically of the same order of magnitude as the

perturbation. Notice that the conservation law to lowest order is simply ∂µT µν = 0. We will

most often be concerned with the vacuum equations, which as usual are just Rµν = 0, where
Rµν is given by (6.6).
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With the linearized field equations in hand, we are almost prepared to set about solving

them. First, however, we should deal with the thorny issue of gauge invariance. This issue
arises because the demand that gµν = ηµν + hµν does not completely specify the coordinate

system on spacetime; there may be other coordinate systems in which the metric can still

be written as the Minkowski metric plus a small perturbation, but the perturbation will be

different. Thus, the decomposition of the metric into a flat background plus a perturbation

is not unique.

We can think about this from a highbrow point of view. The notion that the linearized
theory can be thought of as one governing the behavior of tensor fields on a flat background

can be formalized in terms of a “background spacetime” Mb, a “physical spacetime” Mp,

and a diffeomorphism φ : Mb → Mp. As manifolds Mb and Mp are “the same” (since

they are diffeomorphic), but we imagine that they possess some different tensor fields; on

Mb we have defined the flat Minkowski metric ηµν , while on Mp we have some metric gαβ

which obeys Einstein’s equations. (We imagine that Mb is equipped with coordinates xµ and
Mp is equipped with coordinates yα, although these will not play a prominent role.) The

diffeomorphism φ allows us to move tensors back and forth between the background and

physical spacetimes. Since we would like to construct our linearized theory as one taking

place on the flat background spacetime, we are interested in the pullback (φ∗g)µν of the

physical metric. We can define the perturbation as the difference between the pulled-back

physical metric and the flat one:

hµν = (φ∗g)µν − ηµν . (6.10)

From this definition, there is no reason for the components of hµν to be small; however, if the

gravitational fields on Mp are weak, then for some diffeomorphisms φ we will have |hµν | << 1.
We therefore limit our attention only to those diffeomorphisms for which this is true. Then

the fact that gαβ obeys Einstein’s equations on the physical spacetime means that hµν will

obey the linearized equations on the background spacetime (since φ, as a diffeomorphism,

can be used to pull back Einstein’s equations themselves).

φ*

φ*

M M
φb p

(    g)µν

gαβ
ηµν

In this language, the issue of gauge invariance is simply the fact that there are a large

number of permissible diffeomorphisms between Mb and Mp (where “permissible” means
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that the perturbation is small). Consider a vector field ξµ(x) on the background spacetime.

This vector field generates a one-parameter family of diffeomorphisms ψε : Mb → Mb. For
ε sufficiently small, if φ is a diffeomorphism for which the perturbation defined by (6.10) is

small than so will (φ ◦ ψε) be, although the perturbation will have a different value.

(      ψ  )φ ε

(      ψ  )φ ε

M Mb p

ψ

*

ε
ξ

µ

Specifically, we can define a family of perturbations parameterized by ε:

h(ε)
µν = [(φ ◦ ψε)∗g]µν − ηµν

= [ψε∗(φ∗g)]µν − ηµν . (6.11)

The second equality is based on the fact that the pullback under a composition is given by
the composition of the pullbacks in the opposite order, which follows from the fact that the

pullback itself moves things in the opposite direction from the original map. Plugging in the

relation (6.10), we find

h(ε)
µν = ψε∗(h + η)µν − ηµν

= ψε∗(hµν) + ψε∗(ηµν) − ηµν (6.12)

(since the pullback of the sum of two tensors is the sum of the pullbacks). Now we use our
assumption that ε is small; in this case ψε∗(hµν) will be equal to hµν to lowest order, while

the other two terms give us a Lie derivative:

h(ε)
µν = ψε∗(hµν) + ε

[
ψε∗(ηµν) − ηµν

ε

]

= hµν + ε£ξηµν

= hµν + 2ε∂(µξν) . (6.13)

The last equality follows from our previous computation of the Lie derivative of the metric,

(5.33), plus the fact that covariant derivatives are simply partial derivatives to lowest order.

The infinitesimal diffeomorphisms φε provide a different representation of the same phys-

ical situation, while maintaining our requirement that the perturbation be small. Therefore,
the result (6.12) tells us what kind of metric perturbations denote physically equivalent

spacetimes — those related to each other by 2ε∂(µξν), for some vector ξµ. The invariance of
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our theory under such transformations is analogous to traditional gauge invariance of elec-

tromagnetism under Aµ → Aµ + ∂µλ. (The analogy is different from the previous analogy
we drew with electromagnetism, relating local Lorentz transformations in the orthonormal-

frame formalism to changes of basis in an internal vector bundle.) In electromagnetism the

invariance comes about because the field strength Fµν = ∂µAν − ∂νAµ is left unchanged

by gauge transformations; similarly, we find that the transformation (6.13) changes the lin-

earized Riemann tensor by

δRµνρσ =
1

2
(∂ρ∂ν∂µξσ + ∂ρ∂ν∂σξµ + ∂σ∂µ∂νξρ + ∂σ∂µ∂ρξν

−∂σ∂ν∂µξρ − ∂σ∂ν∂ρξµ − ∂ρ∂µ∂νξσ − ∂ρ∂µ∂σξν)

= 0 . (6.14)

Our abstract derivation of the appropriate gauge transformation for the metric perturba-

tion is verified by the fact that it leaves the curvature (and hence the physical spacetime)
unchanged.

Gauge invariance can also be understood from the slightly more lowbrow but considerably

more direct route of infinitesimal coordinate transformations. Our diffeomorphism ψε can

be thought of as changing coordinates from xµ to xµ − εξµ. (The minus sign, which is

unconventional, comes from the fact that the “new” metric is pulled back from a small

distance forward along the integral curves, which is equivalent to replacing the coordinates
by those a small distance backward along the curves.) Following through the usual rules for

transforming tensors under coordinate transformations, you can derive precisely (6.13) —

although you have to cheat somewhat by equating components of tensors in two different

coordinate systems. See Schutz or Weinberg for an example.

When faced with a system that is invariant under some kind of gauge transformations,

our first instinct is to fix a gauge. We have already discussed the harmonic coordinate
system, and will return to it now in the context of the weak field limit. Recall that this

gauge was specified by !xµ = 0, which we showed was equivalent to

gµνΓρ
µν = 0 . (6.15)

In the weak field limit this becomes

1

2
ηµνηλρ(∂µhνλ + ∂νhλµ − ∂λhµν) = 0 , (6.16)

or

∂µhµ
λ − 1

2
∂λh = 0 . (6.17)

This condition is also known as Lorentz gauge (or Einstein gauge or Hilbert gauge or de Don-
der gauge or Fock gauge). As before, we still have some gauge freedom remaining, since we

can change our coordinates by (infinitesimal) harmonic functions.
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In this gauge, the linearized Einstein equations Gµν = 8πGTµν simplify somewhat, to

!hµν −
1

2
ηµν!h = −16πGTµν , (6.18)

while the vacuum equations Rµν = 0 take on the elegant form

!hµν = 0 , (6.19)

which is simply the conventional relativistic wave equation. Together, (6.19) and (6.17)

determine the evolution of a disturbance in the gravitational field in vacuum in the harmonic
gauge.

It is often convenient to work with a slightly different description of the metric pertur-

bation. We define the “trace-reversed” perturbation h̄µν by

h̄µν = hµν −
1

2
ηµνh . (6.20)

The name makes sense, since h̄µ
µ = −hµ

µ. (The Einstein tensor is simply the trace-reversed

Ricci tensor.) In terms of h̄µν the harmonic gauge condition becomes

∂µh̄
µ

λ = 0 . (6.21)

The full field equations are

!h̄µν = −16πGTµν , (6.22)

from which it follows immediately that the vacuum equations are

!h̄µν = 0 . (6.23)

From (6.22) and our previous exploration of the Newtonian limit, it is straightforward to

derive the weak-field metric for a stationary spherical source such as a planet or star. Recall
that previously we found that Einstein’s equations predicted that h00 obeyed the Poisson

equation (4.51) in the weak-field limit, which implied

h00 = −2Φ , (6.24)

where Φ is the conventional Newtonian potential, Φ = −GM/r. Let us now assume that

the energy-momentum tensor of our source is dominated by its rest energy density ρ = T00.
(Such an assumption is not generally necessary in the weak-field limit, but will certainly

hold for a planet or star, which is what we would like to consider for the moment.) Then

the other components of Tµν will be much smaller than T00, and from (6.22) the same must

hold for h̄µν . If h̄00 is much larger than h̄ij , we will have

h = −h̄ = −ηµνh̄µν = h̄00 , (6.25)
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and then from (6.20) we immediately obtain

h̄00 = 2h00 = −4Φ . (6.26)

The other components of h̄µν are negligible, from which we can derive

hi0 = h̄i0 −
1

2
ηi0h̄ = 0 , (6.27)

and

hij = h̄ij −
1

2
ηijh̄ = −2Φδij . (6.28)

The metric for a star or planet in the weak-field limit is therefore

ds2 = −(1 + 2Φ)dt2 + (1 − 2Φ)(dx2 + dy2 + dz2) . (6.29)

A somewhat less simplistic application of the weak-field limit is to gravitational radiation.

Those of you familiar with the analogous problem in electromagnetism will notice that the

procedure is almost precisely the same. We begin by considering the linearized equations in

vacuum (6.23). Since the flat-space D’Alembertian has the form ! = −∂2
t + ∇2, the field

equation is in the form of a wave equation for h̄µν . As all good physicists know, the thing to

do when faced with such an equation is to write down complex-valued solutions, and then

take the real part at the very end of the day. So we recognize that a particularly useful set

of solutions to this wave equation are the plane waves, given by

h̄µν = Cµνe
ikσxσ

, (6.30)

where Cµν is a constant, symmetric, (0, 2) tensor, and kσ is a constant vector known as the

wave vector. To check that it is a solution, we plug in:

0 = !h̄µν

= ηρσ∂ρ∂σh̄µν

= ηρσ∂ρ(ikσh̄µν)

= −ηρσkρkσh̄µν

= −kσkσh̄µν . (6.31)

Since (for an interesting solution) not all of the components of hµν will be zero everywhere,

we must have
kσkσ = 0 . (6.32)

The plane wave (6.30) is therefore a solution to the linearized equations if the wavevector
is null; this is loosely translated into the statement that gravitational waves propagate at

the speed of light. The timelike component of the wave vector is often referred to as the



6 WEAK FIELDS AND GRAVITATIONAL RADIATION 149

frequency of the wave, and we write kσ = (ω, k1, k2, k3). (More generally, an observer

moving with four-velocity Uµ would observe the wave to have a frequency ω = −kµUµ.)
Then the condition that the wave vector be null becomes

ω2 = δijk
ikj . (6.33)

Of course our wave is far from the most general solution; any (possibly infinite) number of

distinct plane waves can be added together and will still solve the linear equation (6.23).

Indeed, any solution can be written as such a superposition.

There are a number of free parameters to specify the wave: ten numbers for the coefficients

Cµν and three for the null vector kσ. Much of these are the result of coordinate freedom and
gauge freedom, which we now set about eliminating. We begin by imposing the harmonic

gauge condition, (6.21). This implies that

0 = ∂µh̄µν

= ∂µ(Cµνeikσxσ

)

= iCµνkµe
ikσxσ

, (6.34)

which is only true if
kµCµν = 0 . (6.35)

We say that the wave vector is orthogonal to Cµν . These are four equations, which reduce
the number of independent components of Cµν from ten to six.

Although we have now imposed the harmonic gauge condition, there is still some coor-

dinate freedom left. Remember that any coordinate transformation of the form

xµ → xµ + ζµ (6.36)

will leave the harmonic coordinate condition

!xµ = 0 (6.37)

satisfied as long as we have
!ζµ = 0 . (6.38)

Of course, (6.38) is itself a wave equation for ζµ; once we choose a solution, we will have
used up all of our gauge freedom. Let’s choose the following solution:

ζµ = Bµe
ikσxσ

, (6.39)

where kσ is the wave vector for our gravitational wave and the Bµ are constant coefficients.

We now claim that this remaining freedom allows us to convert from whatever coefficients

C(old)
µν that characterize our gravitational wave to a new set C(new)

µν , such that

C(new)µ
µ = 0 (6.40)
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and

C(new)
0ν = 0 . (6.41)

(Actually this last condition is both a choice of gauge and a choice of Lorentz frame. The

choice of gauge sets UµC(new)
µν = 0 for some constant timelike vector Uµ, while the choice of

frame makes Uµ point along the time axis.) Let’s see how this is possible by solving explicitly

for the necessary coefficients Bµ. Under the transformation (6.36), the resulting change in

our metric perturbation can be written

h(new)
µν = h(old)

µν − ∂µζν − ∂νζµ , (6.42)

which induces a change in the trace-reversed perturbation,

h̄(new)
µν = h(new)

µν − 1

2
ηµνh

(new)

= h(old)
µν − ∂µζν − ∂νζµ − 1

2
ηµν(h

(old) − 2∂λζ
λ)

= h̄(old)
µν − ∂µζν − ∂νζµ + ηµν∂λζ

λ . (6.43)

Using the specific forms (6.30) for the solution and (6.39) for the transformation, we obtain

C(new)
µν = C(old)

µν − ikµBν − ikνBµ + iηµνkλB
λ . (6.44)

Imposing (6.40) therefore means

0 = C(old)µ
µ + 2ikλB

λ , (6.45)

or

kλB
λ =

i

2
C(old)µ

µ . (6.46)

Then we can impose (6.41), first for ν = 0:

0 = C(old)
00 − 2ik0B0 − ikλB

λ

= C(old)
00 − 2ik0B0 +

1

2
C(old)µ

µ , (6.47)

or
B0 = − i

2k0

(
C(old)

00 +
1

2
C(old)µ

µ

)
. (6.48)

Then impose (6.41) for ν = j:

0 = C(old)
0j − ik0Bj − ikjB0

= C(old)
0j − ik0Bj − ikj

[ −i

2k0

(
C(old)

00 +
1

2
C(old)µ

µ

)]
, (6.49)
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or

Bj =
i

2(k0)2

[
−2k0C

(old)
0j + kj

(
C(old)

00 +
1

2
C(old)µ

µ

)]
. (6.50)

To check that these choices are mutually consistent, we should plug (6.48) and (6.50) back

into (6.40), which I will leave to you. Let us assume that we have performed this transfor-

mation, and refer to the new components C(new)
µν simply as Cµν .

Thus, we began with the ten independent numbers in the symmetric matrix Cµν . Choos-

ing harmonic gauge implied the four conditions (6.35), which brought the number of indepen-

dent components down to six. Using our remaining gauge freedom led to the one condition

(6.40) and the four conditions (6.41); but when ν = 0 (6.41) implies (6.35), so we have a

total of four additional constraints, which brings us to two independent components. We’ve

used up all of our possible freedom, so these two numbers represent the physical information
characterizing our plane wave in this gauge. This can be seen more explicitly by choosing

our spatial coordinates such that the wave is travelling in the x3 direction; that is,

kµ = (ω, 0, 0, k3) = (ω, 0, 0, ω) , (6.51)

where we know that k3 = ω because the wave vector is null. In this case, kµCµν = 0 and

C0ν = 0 together imply

C3ν = 0 . (6.52)

The only nonzero components of Cµν are therefore C11, C12, C21, and C22. But Cµν is
traceless and symmetric, so in general we can write

Cµν =





0 0 0 0
0 C11 C12 0
0 C12 −C11 0
0 0 0 0



 . (6.53)

Thus, for a plane wave in this gauge travelling in the x3 direction, the two components C11

and C12 (along with the frequency ω) completely characterize the wave.

In using up all of our gauge freedom, we have gone to a subgauge of the harmonic gauge

known as the transverse traceless gauge (or sometimes “radiation gauge”). The name

comes from the fact that the metric perturbation is traceless and perpendicular to the wave

vector. Of course, we have been working with the trace-reversed perturbation h̄µν rather
than the perturbation hµν itself; but since h̄µν is traceless (because Cµν is), and is equal to

the trace-reverse of hµν , in this gauge we have

h̄TT
µν = hTT

µν (transverse traceless gauge) . (6.54)

Therefore we can drop the bars over hµν , as long as we are in this gauge.
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One nice feature of the transverse traceless gauge is that if you are given the components

of a plane wave in some arbitrary gauge, you can easily convert them into the transverse
traceless components. We first define a tensor Pµν which acts as a projection operator:

Pµν = ηµν − nµnν . (6.55)

You can check that this projects vectors onto hyperplanes orthogonal to the unit vector nµ.
Here we take nµ to be a spacelike unit vector, which we choose to lie along the direction of

propagation of the wave:

n0 = 0 , nj = kj/ω . (6.56)

Then the transverse part of some perturbation hµν is simply the projection Pµ
ρPν

σhρσ, and
the transverse traceless part is obtained by subtracting off the trace:

hTT
µν = Pµ

ρPν
σhρσ − 1

2
PµνP

ρσhρσ . (6.57)

For details appropriate to more general cases, see the discussion in Misner, Thorne and

Wheeler.

To get a feeling for the physical effects due to gravitational waves, it is useful to consider
the motion of test particles in the presence of a wave. It is certainly insufficient to solve

for the trajectory of a single particle, since that would only tell us about the values of

the coordinates along the world line. (In fact, for any single particle we can find transverse

traceless coordinates in which the particle appears stationary to first order in hµν .) To obtain

a coordinate-independent measure of the wave’s effects, we consider the relative motion of

nearby particles, as described by the geodesic deviation equation. If we consider some nearby
particles with four-velocities described by a single vector field Uµ(x) and separation vector

Sµ, we have
D2

dτ 2
Sµ = Rµ

νρσUνUρSσ . (6.58)

We would like to compute the left-hand side to first order in hµν . If we take our test

particles to be moving slowly then we can express the four-velocity as a unit vector in the
time direction plus corrections of order hµν and higher; but we know that the Riemann tensor

is already first order, so the corrections to Uν may be ignored, and we write

Uν = (1, 0, 0, 0) . (6.59)

Therefore we only need to compute Rµ
00σ, or equivalently Rµ00σ. From (6.5) we have

Rµ00σ =
1

2
(∂0∂0hµσ + ∂σ∂µh00 − ∂σ∂0hµ0 − ∂µ∂0hσ0) . (6.60)

But hµ0 = 0, so

Rµ00σ =
1

2
∂0∂0hµσ . (6.61)
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Meanwhile, for our slowly-moving particles we have τ = x0 = t to lowest order, so the

geodesic deviation equation becomes

∂2

∂t2
Sµ =

1

2
Sσ ∂

2

∂t2
hµ

σ . (6.62)

For our wave travelling in the x3 direction, this implies that only S1 and S2 will be affected

— the test particles are only disturbed in directions perpendicular to the wave vector. This

is of course familiar from electromagnetism, where the electric and magnetic fields in a plane

wave are perpendicular to the wave vector.
Our wave is characterized by the two numbers, which for future convenience we will

rename as C+ = C11 and C× = C12. Let’s consider their effects separately, beginning with

the case C× = 0. Then we have

∂2

∂t2
S1 =

1

2
S1 ∂

2

∂t2
(C+eikσxσ

) (6.63)

and
∂2

∂t2
S2 = −1

2
S2 ∂

2

∂t2
(C+eikσxσ

) . (6.64)

These can be immediately solved to yield, to lowest order,

S1 =
(
1 +

1

2
C+eikσxσ

)
S1(0) (6.65)

and
S2 =

(
1 − 1

2
C+eikσxσ

)
S2(0) . (6.66)

Thus, particles initially separated in the x1 direction will oscillate back and forth in the x1

direction, and likewise for those with an initial x2 separation. That is, if we start with a ring

of stationary particles in the x-y plane, as the wave passes they will bounce back and forth

in the shape of a “+”:

x

y

On the other hand, the equivalent analysis for the case where C+ = 0 but C× %= 0 would

yield the solution

S1 = S1(0) +
1

2
C×eikσxσ

S2(0) (6.67)
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and

S2 = S2(0) +
1

2
C×eikσxσ

S1(0) . (6.68)

In this case the circle of particles would bounce back and forth in the shape of a “×”:

x

y

The notation C+ and C× should therefore be clear. These two quantities measure the two

independent modes of linear polarization of the gravitational wave. If we liked we could
consider right- and left-handed circularly polarized modes by defining

CR =
1√
2
(C+ + iC×) ,

CL =
1√
2
(C+ − iC×) . (6.69)

The effect of a pure CR wave would be to rotate the particles in a right-handed sense,

x

y

and similarly for the left-handed mode CL. (Note that the individual particles do not travel

around the ring; they just move in little epicycles.)

We can relate the polarization states of classical gravitational waves to the kinds of

particles we would expect to find upon quantization. The electromagnetic field has two in-

dependent polarization states which are described by vectors in the x-y plane; equivalently,

a single polarization mode is invariant under a rotation by 360◦ in this plane. Upon quan-
tization this theory yields the photon, a massless spin-one particle. The neutrino, on the

other hand, is also a massless particle, described by a field which picks up a minus sign

under rotations by 360◦; it is invariant under rotations of 720◦, and we say it has spin-1
2 .
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The general rule is that the spin S is related to the angle θ under which the polarization

modes are invariant by S = 360◦/θ. The gravitational field, whose waves propagate at the
speed of light, should lead to massless particles in the quantum theory. Noticing that the

polarization modes we have described are invariant under rotations of 180◦ in the x-y plane,

we expect the associated particles — “gravitons” — to be spin-2. We are a long way from

detecting such particles (and it would not be a surprise if we never detected them directly),

but any respectable quantum theory of gravity should predict their existence.

With plane-wave solutions to the linearized vacuum equations in our possession, it re-
mains to discuss the generation of gravitational radiation by sources. For this purpose it is

necessary to consider the equations coupled to matter,

!h̄µν = −16πGTµν . (6.70)

The solution to such an equation can be obtained using a Green’s function, in precisely the

same way as the analogous problem in electromagnetism. Here we will review the outline of

the method.

The Green’s function G(xσ − yσ) for the D’Alembertian operator ! is the solution of the

wave equation in the presence of a delta-function source:

!xG(xσ − yσ) = δ(4)(xσ − yσ) , (6.71)

where !x denotes the D’Alembertian with respect to the coordinates xσ. The usefulness of
such a function resides in the fact that the general solution to an equation such as (6.70)

can be written

h̄µν(x
σ) = −16πG

∫
G(xσ − yσ)Tµν(y

σ) d4y , (6.72)

as can be verified immediately. (Notice that no factors of
√
−g are necessary, since our

background is simply flat spacetime.) The solutions to (6.71) have of course been worked

out long ago, and they can be thought of as either “retarded” or “advanced,” depending on
whether they represent waves travelling forward or backward in time. Our interest is in the

retarded Green’s function, which represents the accumulated effects of signals to the past of

the point under consideration. It is given by

G(xσ − yσ) = − 1

4π|x − y|δ[|x − y| − (x0 − y0)] θ(x0 − y0) . (6.73)

Here we have used boldface to denote the spatial vectors x = (x1, x2, x3) and y = (y1, y2, y3),

with norm |x − y| = [δij(xi − yi)(xj − yj)]1/2. The theta function θ(x0 − y0) equals 1 when

x0 > y0, and zero otherwise. The derivation of (6.73) would take us too far afield, but it can

be found in any standard text on electrodynamics or partial differential equations in physics.
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Upon plugging (6.73) into (6.72), we can use the delta function to perform the integral

over y0, leaving us with

h̄µν(t,x) = 4G
∫ 1

|x − y|Tµν(t − |x − y|,y) d3y , (6.74)

where t = x0. The term “retarded time” is used to refer to the quantity

tr = t − |x − y| . (6.75)

The interpretation of (6.74) should be clear: the disturbance in the gravitational field at (t,x)
is a sum of the influences from the energy and momentum sources at the point (tr,x − y)

on the past light cone.

t xi
yi

(t  , y  )ir

Let us take this general solution and consider the case where the gravitational radiation

is emitted by an isolated source, fairly far away, comprised of nonrelativistic matter; these

approximations will be made more precise as we go on. First we need to set up some con-
ventions for Fourier transforms, which always make life easier when dealing with oscillatory

phenomena. Given a function of spacetime φ(t,x), we are interested in its Fourier transform

(and inverse) with respect to time alone,

φ̃(ω,x) =
1√
2π

∫
dt eiωtφ(t,x) ,

φ(t,x) =
1√
2π

∫
dω e−iωtφ̃(ω,x) . (6.76)

Taking the transform of the metric perturbation, we obtain

˜̄hµν(ω,x) =
1√
2π

∫
dt eiωth̄µν(t,x)
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=
4G√
2π

∫
dt d3y eiωt Tµν(t − |x − y|,y)

|x − y|

=
4G√
2π

∫
dtr d3y eiωtreiω|x−y|Tµν(tr,y)

|x − y|

= 4G
∫

d3y eiω|x−y| T̃µν(ω,y)

|x − y|
. (6.77)

In this sequence, the first equation is simply the definition of the Fourier transform, the
second line comes from the solution (6.74), the third line is a change of variables from t to

tr, and the fourth line is once again the definition of the Fourier transform.

We now make the approximations that our source is isolated, far away, and slowly moving.

This means that we can consider the source to be centered at a (spatial) distance R, with

the different parts of the source at distances R + δR such that δR << R. Since it is

slowly moving, most of the radiation emitted will be at frequencies ω sufficiently low that
δR << ω−1. (Essentially, light traverses the source much faster than the components of the

source itself do.)

observer
R

Rδ
source

Under these approximations, the term eiω|x−y|/|x−y| can be replaced by eiωR/R and brought
outside the integral. This leaves us with

˜̄hµν(ω,x) = 4G
eiωR

R

∫
d3y T̃µν(ω,y) . (6.78)

In fact there is no need to compute all of the components of ˜̄hµν(ω,x), since the harmonic

gauge condition ∂µh̄µν(t,x) = 0 in Fourier space implies

˜̄h0ν =
i

ω
∂i

˜̄hiν . (6.79)

We therefore only need to concern ourselves with the spacelike components of ˜̄hµν(ω,x).

From (6.78) we therefore want to take the integral of the spacelike components of T̃µν(ω,y).
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We begin by integrating by parts in reverse:
∫

d3y T̃ ij(ω,y) =
∫
∂k(y

iT̃ kj) d3y −
∫

yi(∂kT̃
kj) d3y . (6.80)

The first term is a surface integral which will vanish since the source is isolated, while the

second can be related to T̃ 0j by the Fourier-space version of ∂µT µν = 0:

− ∂kT̃
kµ = iωT̃ 0µ . (6.81)

Thus,
∫

d3y T̃ ij(ω,y) = iω
∫

yiT̃ 0j d3y

=
iω

2

∫
(yiT̃ 0j + yjT̃ 0i) d3y

=
iω

2

∫ [
∂l(y

iyjT̃ 0l) − yiyj(∂lT̃
0l)

]
d3y

= −ω
2

2

∫
yiyjT̃ 00 d3y . (6.82)

The second line is justified since we know that the left hand side is symmetric in i and j,

while the third and fourth lines are simply repetitions of reverse integration by parts and
conservation of T µν . It is conventional to define the quadrupole moment tensor of the

energy density of the source,

qij(t) = 3
∫

yiyjT 00(t,y) d3y , (6.83)

a constant tensor on each surface of constant time. In terms of the Fourier transform of the

quadrupole moment, our solution takes on the compact form

˜̄hij(ω,x) = −2Gω2

3

eiωR

R
q̃ij(ω) , (6.84)

or, transforming back to t,

h̄ij(t,x) = − 1√
2π

2G

3R

∫
dω e−iω(t−R)ω2q̃ij(ω)

=
1√
2π

2G

3R

d2

dt2

∫
dω e−iωtr q̃ij(ω)

=
2G

3R

d2qij

dt2
(tr) , (6.85)

where as before tr = t − R.
The gravitational wave produced by an isolated nonrelativistic object is therefore pro-

portional to the second derivative of the quadrupole moment of the energy density at the
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point where the past light cone of the observer intersects the source. In contrast, the leading

contribution to electromagnetic radiation comes from the changing dipole moment of the
charge density. The difference can be traced back to the universal nature of gravitation. A

changing dipole moment corresponds to motion of the center of density — charge density in

the case of electromagnetism, energy density in the case of gravitation. While there is noth-

ing to stop the center of charge of an object from oscillating, oscillation of the center of mass

of an isolated system violates conservation of momentum. (You can shake a body up and

down, but you and the earth shake ever so slightly in the opposite direction to compensate.)
The quadrupole moment, which measures the shape of the system, is generally smaller than

the dipole moment, and for this reason (as well as the weak coupling of matter to gravity)

gravitational radiation is typically much weaker than electromagnetic radiation.

It is always educational to take a general solution and apply it to a specific case of

interest. One case of genuine interest is the gravitational radiation emitted by a binary star

(two stars in orbit around each other). For simplicity let us consider two stars of mass M in
a circular orbit in the x1-x2 plane, at distance r from their common center of mass.

x

x

x

M
M

v

v

r r

1

2

3

We will treat the motion of the stars in the Newtonian approximation, where we can discuss

their orbit just as Kepler would have. Circular orbits are most easily characterized by

equating the force due to gravity to the outward “centrifugal” force:

GM2

(2r)2
=

Mv2

r
, (6.86)

which gives us

v =
(

GM

4r

)1/2

. (6.87)

The time it takes to complete a single orbit is simply

T =
2πr

v
, (6.88)
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but more useful to us is the angular frequency of the orbit,

Ω =
2π

T
=

(
GM

4r3

)1/2

. (6.89)

In terms of Ω we can write down the explicit path of star a,

x1
a = r cosΩt , x2

a = r sinΩt , (6.90)

and star b,

x1
b = −r cosΩt , x2

b = −r sinΩt . (6.91)

The corresponding energy density is

T 00(t,x) = Mδ(x3)
[
δ(x1 − r cosΩt)δ(x2 − r sin Ωt) + δ(x1 + r cosΩt)δ(x2 + r sinΩt)

]
.

(6.92)

The profusion of delta functions allows us to integrate this straightforwardly to obtain the
quadrupole moment from (6.83):

q11 = 6Mr2 cos2 Ωt = 3Mr2(1 + cos 2Ωt)

q22 = 6Mr2 sin2 Ωt = 3Mr2(1 − cos 2Ωt)

q12 = q21 = 6Mr2(cosΩt)(sin Ωt) = 3Mr2 sin 2Ωt
qi3 = 0 . (6.93)

From this in turn it is easy to get the components of the metric perturbation from (6.85):

h̄ij(t,x) =
8GM

R
Ω2r2




− cos 2Ωtr − sin 2Ωtr 0
− sin 2Ωtr cos 2Ωtr 0

0 0 0



 . (6.94)

The remaining components of h̄µν could be derived from demanding that the harmonic gauge

condition be satisfied. (We have not imposed a subsidiary gauge condition, so we are still

free to do so.)
It is natural at this point to talk about the energy emitted via gravitational radiation.

Such a discussion, however, is immediately beset by problems, both technical and philo-

sophical. As we have mentioned before, there is no true local measure of the energy in

the gravitational field. Of course, in the weak field limit, where we think of gravitation as

being described by a symmetric tensor propagating on a fixed background metric, we might

hope to derive an energy-momentum tensor for the fluctuations hµν , just as we would for
electromagnetism or any other field theory. To some extent this is possible, but there are

still difficulties. As a result of these difficulties there are a number of different proposals in

the literature for what we should use as the energy-momentum tensor for gravitation in the
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weak field limit; all of them are different, but for the most part they give the same answers

for physically well-posed questions such as the rate of energy emitted by a binary system.
At a technical level, the difficulties begin to arise when we consider what form the energy-

momentum tensor should take. We have previously mentioned the energy-momentum tensors

for electromagnetism and scalar field theory, and they both shared an important feature —

they were quadratic in the relevant fields. By hypothesis our approach to the weak field limit

has been to only keep terms which are linear in the metric perturbation. Hence, in order

to keep track of the energy carried by the gravitational waves, we will have to extend our
calculations to at least second order in hµν . In fact we have been cheating slightly all along.

In discussing the effects of gravitational waves on test particles, and the generation of waves

by a binary system, we have been using the fact that test particles move along geodesics. But

as we know, this is derived from the covariant conservation of energy-momentum, ∇µT µν = 0.

In the order to which we have been working, however, we actually have ∂µT µν = 0, which

would imply that test particles move on straight lines in the flat background metric. This
is a symptom of the fundamental inconsistency of the weak field limit. In practice, the best

that can be done is to solve the weak field equations to some appropriate order, and then

justify after the fact the validity of the solution.

Keeping these issues in mind, let us consider Einstein’s equations (in vacuum) to second

order, and see how the result can be interpreted in terms of an energy-momentum tensor for

the gravitational field. If we write the metric as gµν = ηµν + hµν , then at first order we have

G(1)
µν [η + h] = 0 , (6.95)

where G(1)
µν is Einstein’s tensor expanded to first order in hµν . These equations determine

hµν up to (unavoidable) gauge transformations, so in order to satisfy the equations at second

order we have to add a higher-order perturbation, and write

gµν = ηµν + hµν + h(2)
µν . (6.96)

The second-order version of Einstein’s equations consists of all terms either quadratic in hµν

or linear in h(2)
µν . Since any cross terms would be of at least third order, we have

G(1)
µν [η + h(2)] + G(2)

µν [η + h] = 0 . (6.97)

Here, G(2)
µν is the part of the Einstein tensor which is of second order in the metric perturba-

tion. It can be computed from the second-order Ricci tensor, which is given by

R(2)
µν =

1

2
hρσ∂µ∂νhρσ − hρσ∂ρ∂(µhν)σ +

1

4
(∂µhρσ)∂νh

ρσ + (∂σhρ
ν)∂[σhρ]µ

+
1

2
∂σ(hρσ∂ρhµν) −

1

4
(∂ρhµν)∂

ρh − (∂σhρσ − 1

2
∂ρh)∂(µhν)ρ . (6.98)
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We can cast (6.97) into the suggestive form

G(1)
µν [η + h(2)] = 8πGtµν , (6.99)

simply by defining

tµν = − 1

8πG
G(2)

µν [η + h] . (6.100)

The notation is of course meant to suggest that we think of tµν as an energy-momentum

tensor, specifically that of the gravitational field (at least in the weak field regime). To make

this claim seem plausible, note that the Bianchi identity for G(1)
µν [η + h(2)] implies that tµν is

conserved in the flat-space sense,
∂µtµν = 0 . (6.101)

Unfortunately there are some limitations on our interpretation of tµν as an energy-

momentum tensor. Of course it is not a tensor at all in the full theory, but we are leaving

that aside by hypothesis. More importantly, it is not invariant under gauge transformations

(infinitesimal diffeomorphisms), as you could check by direct calculation. However, we can

construct global quantities which are invariant under certain special kinds of gauge transfor-

mations (basically, those that vanish sufficiently rapidly at infinity; see Wald). These include
the total energy on a surface Σ of constant time,

E =
∫

Σ
t00 d3x , (6.102)

and the total energy radiated through to infinity,

∆E =
∫

S
t0µn

µ d2x dt . (6.103)

Here, the integral is taken over a timelike surface S made of a spacelike two-sphere at infinity
and some interval in time, and nµ is a unit spacelike vector normal to S.

Evaluating these formulas in terms of the quadrupole moment of a radiating source

involves a lengthy calculation which we will not reproduce here. Without further ado, the

amount of radiated energy can be written

∆E =
∫

P dt , (6.104)

where the power P is given by

P =
G

45

[
d3Qij

dt3
d3Qij

dt3

]

tr

, (6.105)

and here Qij is the traceless part of the quadrupole moment,

Qij = qij −
1

3
δijδ

klqkl . (6.106)
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For the binary system represented by (6.93), the traceless part of the quadrupole is

Qij = Mr2




(1 + 3 cos 2Ωt) 3 sin 2Ωt 0

3 sin 2Ωt (1 − 3 cos 2Ωt) 0
0 0 −2



 , (6.107)

and its third time derivative is therefore

d3Qij

dt3
= 24Mr2Ω3




sin 2Ωt − cos 2Ωt 0

− cos 2Ωt − sin 2Ωt 0
0 0 0



 . (6.108)

The power radiated by the binary is thus

P =
27

5
GM2r4Ω6 , (6.109)

or, using expression (6.89) for the frequency,

P =
2

5

G4M5

r5
. (6.110)

Of course, this has actually been observed. In 1974 Hulse and Taylor discovered a binary

system, PSR1913+16, in which both stars are very small (so classical effects are negligible, or

at least under control) and one is a pulsar. The period of the orbit is eight hours, extremely

small by astrophysical standards. The fact that one of the stars is a pulsar provides a very

accurate clock, with respect to which the change in the period as the system loses energy

can be measured. The result is consistent with the prediction of general relativity for energy
loss through gravitational radiation. Hulse and Taylor were awarded the Nobel Prize in 1993

for their efforts.


