January 2015

We Are All Machines That Think

My answer to this year’s Edge Question, “What Do You Think About Machines That Think?”


Active_brainJulien de La Mettrie would be classified as a quintessential New Atheist, except for the fact that there’s not much New about him by now. Writing in eighteenth-century France, La Mettrie was brash in his pronouncements, openly disparaging of his opponents, and boisterously assured in his anti-spiritualist convictions. His most influential work, L’homme machine (Man a Machine), derided the idea of a Cartesian non-material soul. A physician by trade, he argued that the workings and diseases of the mind were best understood as features of the body and brain.

As we all know, even today La Mettrie’s ideas aren’t universally accepted, but he was largely on the right track. Modern physics has achieved a complete list of the particles and forces that make up all the matter we directly see around us, both living and non-living, with no room left for extra-physical life forces. Neuroscience, a much more challenging field and correspondingly not nearly as far along as physics, has nevertheless made enormous strides in connecting human thoughts and behaviors with specific actions in our brains. When asked for my thoughts about machines that think, I can’t help but reply: Hey, those are my friends you’re talking about. We are all machines that think, and the distinction between different types of machines is eroding.

We pay a lot of attention these days, with good reason, to “artificial” machines and intelligences — ones constructed by human ingenuity. But the “natural” ones that have evolved through natural selection, like you and me, are still around. And one of the most exciting frontiers in technology and cognition is the increasingly permeable boundary between the two categories.

Artificial intelligence, unsurprisingly in retrospect, is a much more challenging field than many of its pioneers originally supposed. Human programmers naturally think in terms of a conceptual separation between hardware and software, and imagine that conjuring intelligent behavior is a matter of writing the right code. But evolution makes no such distinction. The neurons in our brains, as well as the bodies through which they interact with the world, function as both hardware and software. Roboticists have found that human-seeming behavior is much easier to model in machines when cognition is embodied. Give that computer some arms, legs, and a face, and it starts acting much more like a person.

From the other side, neuroscientists and engineers are getting much better at augmenting human cognition, breaking down the barrier between mind and (artificial) machine. We have primitive brain/computer interfaces, offering the hope that paralyzed patients will be able to speak through computers and operate prosthetic limbs directly.

What’s harder to predict is how connecting human brains with machines and computers will ultimately change the way we actually think. DARPA-sponsored researchers have discovered that the human brain is better than any current computer at quickly analyzing certain kinds of visual data, and developed techniques for extracting the relevant subconscious signals directly from the brain, unmediated by pesky human awareness. Ultimately we’ll want to reverse the process, feeding data (and thoughts) directly to the brain. People, properly augmented, will be able sift through enormous amounts of information, perform mathematical calculations at supercomputer speeds, and visualize virtual directions well beyond our ordinary three dimensions of space.

Where will the breakdown of the human/machine barrier lead us? Julien de La Mettrie, we are told, died at the young age of 41, after attempting to show off his rigorous constitution by eating an enormous quantity of pheasant pâte with truffles. Even leading intellects of the Enlightenment sometimes behaved irrationally. The way we think and act in the world is changing in profound ways, with the help of computers and the way we connect with them. It will be up to us to use our new capabilities wisely.

We Are All Machines That Think Read More »

141 Comments

Dark Matter, Explained

If you’ve ever wondered about dark matter, or been asked puzzled questions about it by your friends, now you have something to point to: this charming video by 11-year-old Lucas Belz-Koeling. (Hat tip Sir Harry Kroto.)

Dark matter draw my life style

The title references “Draw My Life style,” which is (the internet informs me) a label given to this kind of fast-motion photography of someone drawing on a white board.

You go, Lucas. I doubt I would have been doing anything quite this good at that age.

Dark Matter, Explained Read More »

38 Comments

A Simple Form of Poker “Essentially” Solved

You know it’s a good day when there are refereed articles in Science about poker. (Enthusiasm slightly dampened by the article being behind a paywall, but some details here.)

Poker, of course, is a game of incomplete information. You don’t know your opponent’s cards, they don’t know yours. Part of your goal should be to keep it that way: you don’t want to give away information that would let your opponent figure out what you have.

As a result, the best way to play poker (against a competent opponent) is to use a mixed strategy: in any given situation, you want to have different probabilities for taking various actions, rather than a deterministic assignment of the best thing to do. If, for example, you always raise with certain starting hands, and always call with others, an attentive player will figure that out, and thereby gain a great deal of information about your hand. It’s much better to sometimes play weak hands as if they are strong (bluffing) and strong hands as if they are weak (slow-playing). The question is: how often should you be doing that?

Now researchers at a University of Alberta group that studies computerized poker has offered and “essentially” perfect strategy for a very simple form of poker: Heads-Up Limit Hold’em. In Hold’em, each player has two “hole” cards face down, and there are five “board” cards face-up in the middle of the table; your hand is the best five-card combination you can form from your hole cards and the board. “Heads-up” means that only two players are playing (much simpler than a multi-player game), and “limit” means that there is any bet comes in a single pre-specified amount (much simpler than “no-limit,” where you can bet anything from a fixed minimum up to the size of your stack or your opponent’s, whichever is smaller).

A simple game, but not very simple. Bets occur after each player gets their hole cards, and again after three cards (the “flop”) are put on the board, again after a fourth card (the turn), and finally after the last board card (the river) is revealed. If one player bets, the other can raise, and then the initial better can re-raise, up to a number of bets (typically four) that “caps” the betting.

gl_10537

So a finite number of things can possibly happen, which makes the game amenable to computer analysis. But it’s still a large number. There are about 3×1017 “states” that one can reach in the game, where a “state” is defined by a certain number of bets having been made as well as the configuration of cards that have already been dealt. Not easy to analyze! Fortunately (or not), as a player with incomplete information you won’t be able to distinguish between all of those states — i.e. you don’t know your opponent’s hole cards. So it turns out that there are about 3×1014 distinct “decision points” from which a player might end up having to act.

So all you need to do is: for each of those 300 trillion possibilities, assign the best possible mixed strategy — your probability to bet/check if there hasn’t already been a bet, fold/call/raise if there has — and act accordingly. Hey, nobody ever said being a professional poker player would be easy. (As you might know, human beings are very bad at randomness, so many professionals use the second hand on a wristwatch to generate pseudo-random numbers and guide their actions.)

Nobody is going to do that, of course. …

A Simple Form of Poker “Essentially” Solved Read More »

20 Comments

Life Is the Flame of a Candle

Emperor Has No Clothes Award Last October I was privileged to be awarded the Emperor Has No Clothes award from the Freedom From Religion Foundation. The physical trophy consists of the dashing statuette here on the right, presumably the titular Emperor. It’s made by the same company that makes the Academy Award trophies. (Whenever I run into Meryl Streep, she’s just won’t shut up about how her Oscars are produced by the same company that does the Emperor’s New Clothes award.)

Part of the award-winning is the presentation of a short speech, and I wasn’t sure what to talk about. There are only so many things I have to say, but it’s boring to talk about the same stuff over and over again. More importantly, I have no real interest in giving religion-bashing talks; I care a lot more about doing the hard and constructive work of exploring the consequences of naturalism.

So I decided on a cheerful topic: Death and Physics. I talked about modern science gives us very good reasons to believe (not a proof, never a proof) that there is no such thing as an afterlife. Life is a process, not a substance, and it’s a process that begins, proceeds along for a while, and comes to an end. Certainly something I’ve said before, e.g. in my article on Physics and the Immortality of the Soul, and in the recent Afterlife Debate, but I added a bit more here about entropy, complexity, and what we mean by the word “life.”

If you’re in a reflective mood, here it is. I begin at around 3:50. One of the points I tried to make is that the finitude of life has its upside. Every moment is precious, and what we should value is what is around us right now — because that’s all there is. It’s a scary but exhilarating view of the world.

Sean Carroll: Has Science Refuted Religion

Life Is the Flame of a Candle Read More »

79 Comments
Scroll to Top